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Abstract—Cloud service providers started with Infrastructure
as a Service (IaaS) offerings and over time expanded into
Platform as a Service (PaaS) and Software as a Service (SaaS).
Even though each provider has a rich product offering, there
are many scenarios where a multi-cloud strategy is desirable:
utilizing economic dynamics, preventing data lock-in with one
vendor, circumventing geographic restrictions, complying with
local regulations, or combining on-premise and public-cloud
resources. The challenge from a consumer perspective with multi-
cloud deployments is the lack of a common abstraction for the
offered products and a standardized way to express all of the
application requirements for the resulting deployments. In this
paper, we contribute by making yet another case for multi-cloud
deployments and by predicting the emergence of a new generation
of application-level resource managers which will natively sup-
port multi-cloud for enterprise applications. We identify three
main components of the feedback loop controlled application-
level resource managers: the software life-cycle manager, the data
storage and access manager, and the service execution manager.

I. INTRODUCTION

The success of the World Wide Web enabled the rise of

large Internet companies during the dot-com era which led the

expansion of parallel and distributed computing from scientific

and national supercomputing centers into corporate data cen-

ters and commercial applications. Google led the technological

change with proprietary technologies like MapReduce [13],

GFS [16] and Borg [34] which inspired the next generation

of open-source projects in big data infrastructure including

Apache Hadoop [14], HDFS [29], Mesos [19], Hive [32], and

Spark [35]. These solutions enabled companies to build their

on-premise data centers running on Linux, utilizing a mixture

of commercial and open-source big data analytics software.

Fig. 1. Example: Data lifecycle for globally distributed maps application.

The emergence of public cloud enabled next generation

of startups to run big data and globally distributed applica-

tions without building their own data centers. They are often

built so that they can be easily containerized and can be

effectively packaged using Docker images [1]. Kubernetes [8]

is quickly becoming the preferred common infrastructure to

enable running containerized distributed applications on either

cloud or on-premise data centers. The popularity and success

of these new applications running everywhere (custom apps

usually run on smartphones while services run and store data in

public cloud) changed the boundary conditions for capturing,

processing, and storing data so much that governments adapted

regulations regarding security and privacy of personal data.

The European Union General Data Protection Regulation

(GDPR) [5] is an example of this trend.

As an example of a globally distributed application, Figure 1

depicts a familiar mapping application that runs on GPS-

enabled devices including smart phones and car navigational

systems. These devices are connected to Internet and use real-

time services from a globally distributed infrastructure that

runs on a hybrid of on-premise hardware and public cloud.

Highly private data on each device is logged on provider’s

data-centers and is then processed and stored using big data

infrastructure.

Fig. 2. Example: Data storage, processing and serving locations.

Figure 2 depicts typical locations where globally distributed

applications access their backend services. Yellow disks depict

locations of data centers storing private data. Often, these

locations are constrained by local regulations. Blue squares

numbered 1 to 4 depict where mapping service process private

data and host personalized services. Orange squares numbered

4 to 8 depict frontends that only contain public data which

can be served anywhere. It is crucial to always keep private

data secure and make sure that processing and storing is done

according to complex set of still evolving legal regulations
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(like GDPR [5] or China’s Cybersecurity Law [4]). Once this

data is aggregated and anonymized, it is used to improve

the quality of service (accuracy of maps, real-time update of

traffic conditions, personalized search and navigation, etc.). We

expect that maintaining privacy while providing high quality-

of-service and adhering to local regulations will be commonly

solved by leveraging multi-cloud deployments.

II. SURVEY OF EXISTING TECHNOLOGIES

Resource allocation problems are typically NP-hard, but

due to their practical relevance, a large body of relevant

academic work, algorithms, heuristics, commercial and open-

source solutions are available.

A. Resource management within a datacenter

Resource management at cluster level is covered by

academia for several decades, partially motivated by operating

clusters for high performance computing (HPC): Buyya [9]

surveys representative cluster systems, describes resource

management as well as scheduling techniques. Workload man-

agers such as Slurm [21] or TORQUE [31] enable resource

scheduling in systems based on the widely adopted Message

Passing Interface (MPI) [25]. The advent of large-scale In-

ternet applications over the last 15 years increased the size

and distribution of the utilized clusters as well as underlying

availability and scalability properties and requirements in

comparison to high performance computing. This resulted in

the statement by Zaharia et al. that the datacenter needs an
operating system [36]. Subsequent state-of-the-art work on

datacenter level resource management emerged out of industry

and open-source projects.

Apache Yarn [33] decouples the programming model from

the resource management infrastructure in Hadoop [14]. Yarn

enables scheduling of jobs executed by programming frame-

works such as Hadoop MapReduce, Spark, Tez, and others.

Such applications can express their resource requests through

an extensible resource vector (e.g. required processing and

memory), locality preferences, and priority of requests within

the application. The Resource Manager matches a global

model of the cluster state against a digest of the different

resource requests. Apache Yarn supports plugable schedulers

and elastic scaling of cluster nodes.

Facebook Bistro [17] addresses the scheduling of two

different workloads on the same cluster. The two different

workloads are either data-intensive batch jobs or latency

sensitive requests from live customers. Bistro presents a tree-

based resource model which incorporates information such

as resource type, node count and change rate. In addition,

it captures information about each job such as the degree of

concurrency, the change rate, the involved data, and average

duration.

Mesosphere with Apache Mesos [23] as its kernel is a

cluster manager centered around deploying containers. The in-

corporated job scheduler (primarily intended for running Spark

on Mesos) takes the required memory and CPU resources as

input. It can operate in a coarse-grained mode providing lower

latency or in a fine-grained mode providing higher utilization.

Uber Peloton [10] is a cluster management system built on

top of Apache Mesos. Mesos takes care of resource allocation

and task execution, while Peloton covers task placement and

preemption as well as job and task lifecycle. Peloton’s resource

model defines how all resources in a cluster are divided and

applies hierarchical max-min fairness. All resources available

in the cluster are grouped into resource pools and every

resource pool has different dimensions such as CPU, memory,

disk size, or GPU.

Kubernetes [8] is emerging as a preferred cluster manager

for running distributed containerized applications in public and

private clouds. Kubernetes is inspired by Google Borg [34],

cluster manager for Google private data centers running most

Google services and data-processing pipelines. In Google

Borg, each job consists of multiple tasks and each task

runs inside a Linux container and can express its resource

requirements such as CPU cores, memory, disk space, or

TCP ports. Kubernetes runs applications in Linux containers

that are grouped in pods. A pod is a group of one or more

containers with shared network and storage. Docker [1] is the

most commonly used container runtime. Kubernetes supports

networking and storage models that enable plugable solutions

for running Kubernetes clusters in public cloud and in private

data centers. It is currently one of the most active open-source

projects.

B. Resource management across multi-clouds

Over the last decade, the increase of scale and product

variety offered by cloud computing providers such as Amazon

Web Services, Microsoft Azure or Google Cloud Platform

introduces new resource management challenges: no longer

are resources typically consumed from just a single provider,

but it is possible to mix and match the utilized resources

from different vendors (often referred to as multi-cloud). The

resulting challenge of measuring and comparing the service

offerings from a business perspective and in a standardized

way is addressed by the Cloud Services Measurement Initiative

Consortium [30] who publishes a Service Measurement Index

Framework [11]. This framework currently defines over 30

attributes of cloud service characteristics grouped into seven

categories such as accountability, agility, assurance, financials,

performance, security and privacy, and usability. While this

might seem only relevant from a business perspective at a

first glance, academic work in the context of cloud computing

suggests that such attributes will also impact the requirements

towards resource management [26], [28].

The STRATOS project [27] introduces a cloud broker ser-

vice which can deploy and run cloud applications on different

cloud providers. The objectives of the broker are a) optimizing

costs and b) avoiding lock-in. The former is expressed by tak-

ing the prices charged for different service into consideration.

The latter is incorporated by aiming at an equal distribution

of the different workloads across cloud providers. Coutinho et

al. [12] address the cost and execution time optimization across
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multiple cloud providers. They provide a heuristic based on a

a greedy randomized adaptive search procedure which takes

a) the different cloud provider packages and their respective

cost and provided resources as input and b) the consumer

requirements in terms of maximum cost, maximum time, disk

storage, memory capacity, and processing demands. Han et

al. [18] propose a recommendation system which helps to

select a cloud service for a particular task based on the quality-

of-service of the network offered by the service provider and

their virtual machine platform.

Gardener [15] is an open-source project for managing

multiple Kubernetes clusters that can run in public cloud

or in private data centers. This is one of the approaches

for managing multi-cloud applications running on Kubernetes

clusters.

III. FUTURE MULTI-CLOUD DIRECTIONS

Over the last decade, industry and academia have shown

great interest in managing cloud resources and provisioning

them efficiently in a multi-tenant environment considering the

relevant cost and service metrics as discussed in Section II.

However, most of these developments mainly focus on a single

cloud provider. With the advances in cloud technologies, the

notion of solely consuming all services from a single cloud is

disappearing. The 2018 State of the Cloud report [6] reveals

that 81% of enterprises adopt a multi-cloud approach. What

are the main dynamics of this trend?

1) Economic Dynamics: For small-scale enterprises and

businesses, the cloud provides a rich stack of solutions that

make it cheaper to develop and operate distributed applica-

tions. However, as the product matures and reaches a vast

consumer space, the costs of operating it in the cloud in-

crease. By adopting multi-cloud solutions, companies are able

to select which services to use from the competing public

cloud providers. Also, by adopting solutions that can operate

on different cloud providers, companies can migrate their

applications to a different cloud provider or to custom on-

premise data centers.

From a price-performance aspect, the crucial advantage

of moving to multi-cloud is the ability to negotiate with

cloud providers. Being able to operate and run workloads on

multiple cloud providers gives great flexibility and comfort

for enterprises while they are negotiating with vendors. The

competition between cloud vendors will lead to better deals

and reduced cost for service and application deployments.

Another major economical concern for moving away from

a single cloud provider business model is completely relying

on the pricing model of the cloud vendor. A drastic price

increase could leave businesses in a very difficult situation

if they cannot migrate to a different cloud vendor. To prevent

having their businesses affected from such price fluctuations,

companies started diversifying their workloads and services

across multiple cloud providers, so that they will not be

directly impacted in case of a drastic price increase by one

particular provider.

2) Service Reliability: Other than the economic aspect,

relying on a single cloud provider comes with a risk of service

disruptions in case of failures in cloud providers. For example,

during the early 2017 Amazon Web Services (AWS) S3 outage

in the Northern Virginia Region [3], many businesses relying

on only AWS became completely unavailable during the

outage including Amazon’s own dashboard website. Although

multi-cloud does not solve the problem of having service

disruptions entirely (i.e., multiple cloud providers might have

interruptions in their services in the specific region due to

the unforeseen natural disasters), it improves the reliability

and availability of services. A good use-case scenario is Waze

in this context [2]. In one of his talks, Tarcic explains how

Waze utilizes both AWS and Google Cloud Platform (GCP)

for better reliability. Apparently, Waze was serving only on

AWS in 2015 and Tarcic highlighted that Waze barely survived

during the outage. However, the later and more disruptive

AWS S3 outage [3] did not impact Waze, since it was serving

on multiple cloud providers.

3) Regulations: Globally serving companies need to deal

with region or country specific regulations such as the Gen-

eral Data Protection Regulation (GDPR [5]) in the European

Union, the California Consumer Privacy Act (CCPA [20]) in

the United States, or the China’s cybersecurity law [4] that

was first adopted in 2017. Since China has strict regulations

for cloud providers (data centers in China are isolated from

the global network and some services outside China are

directly blocked), it is hard for cloud providers to serve

inside such regulation-intensive regions that give the power to

agencies of conducting a remote network inspection without

informing the third party. This results in not having enough

geographic coverage for some regions. The performance of

services highly depends on bringing services closer to the

users. Therefore, businesses operating in such regions need to

work with local cloud providers. On the other hand, European

GDPR [5] strictly requires storing and processing customer

data in compliant data centers (i.e. physically located in the

EU). It is very likely that we will have more regulations such

as GDPR or CCPA and it will be increasingly harder for a

single cloud provider to comply with all of these regulations.

Also, increasingly code containing trade secrets and high-value

software runs only as a service in secure locations in order

to prevent piracy or to comply with local regulations (for

example, encryption). Therefore, it is becoming necessary for

enterprises and businesses serving in multiple regulated areas

to use a multi-cloud approach.

A. Multi-cloud Resource Management

In the past, most applications run on a single on-premise

machine or a mainframe, with on-premise storage solutions.

Next generation of applications run on private data centers

(e.g., Yahoo, Google, or Facebook). Most new applications

natively support public cloud. Existing enterprise software is

often refactored so that it can also efficiently run in public

cloud. Applications in the cloud usually operate in software-as-

a-service model (as opposed to packaged model). In addition
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Fig. 3. Outline for various system components used in large scale applications.

to running production workloads and services, application

developers also run their development, testing, staging and

other pipelines in the cloud. Many large companies operate

globally, and have developers all over the world. These various

environments usually have different reliability and security

requirements. For example, some portions of source code

should not be visible to all developers in all regions (for

example, encryption or code with high-value trade secrets).

Testing and staging environments can run on cheaper, less

reliable infrastructure (spot instances or on-premise mini data

centers).

Figure 3 illustrates typical order-of-magnitude timescales

for various components of systems running as globally dis-

tributed applications. Our intention here is not to be too

strict but to depict, on a log timescale, how important is

to start handling the month, year and even decade-level

resource optimization problems using automated application-

level schedulers. Schedulers and resource managers in oper-

ating systems operate at the level of microseconds up to few

seconds. Some state in operating systems is longer lived, for

example frequently accessed blocks can stay in buffer cache

for days or months, and some processes live until reboots.

Large deployments try to reboot all of the machines in their

fleet at least once every 6 to 12 months (mostly to be up-to-

date with security fixes [24]). As we move up the timescale,

application code, virtual machines or frameworks deal with

scheduling thread-pools, processes, garbage collection and so

on.

Data-center resource managers schedule new jobs at the

order of seconds or sometimes minutes, depending on the

available resources and user quotas. These jobs then often run

on hundreds or thousands of machines for minutes, hours or

even weeks. Portion of these jobs are long-lived services that

can run multiple years (even though individual replicas will

be restarted or migrated in a rolling-upgrade fashion).

When applications run on multi-cloud, new resources and

cloud services become available during their life span. Local

regulations as well as prices change. Popular applications must

scale to sustain exponential increases in user traffic. They

face new challenges such as botnets attacking their services

or slashdot effects when unexpected event happens (popular

videos can expose scalability issues in video streaming ser-

vices, news event can bring down web servers, etc.). Some

applications can challenge the ability of cloud providers to

support their scale. With the popularity of machine learning,

hardware accelerators are becoming necessary for efficient

large-scale computing workloads (for example, Google’s ten-

sor processing unit (TPU) [22] can efficiently run Tensor-

Flow [7]). Political decisions, censorship attempts, or pricing

changes can all trigger application owners to quickly migrate

from one cloud provider to another. In order to handle these

events, we predict the emergence of application-level resource

managers designed to optimize and control seasonal, annual

and even multi-year infrastructure. Their goal will be to

efficiently run current workloads and to provide infrastructure

for migration after application changes (including the changes

in the applications software, user traffic and the underlying

multi-cloud offerings).

Fig. 4. Application-level resource scheduler.

Figure 4 depicts a scheduler for the application-level re-

source management. Using the current state of the infrastruc-

ture on which an application runs (including the utilization

metrics from monitoring and logs, data storage and database

locations, etc.), and up-to-date application requirements and

multi-cloud offerings (current pricing and the expected per-

formance for each available resource), an application-level

scheduler makes decisions how to change the multi-cloud

infrastructure (migrate or replicate data, move processing

pipelines to cheaper or faster regions, etc.). We expect that the

first generation of these application-level resource managers

to operate in a semi-automatic fashion helping people monitor

and migrate their workloads through configuration changes.

Second generation of these managers will likely be mostly

automatic where application developers only configure the

managers themselves (scheduler algorithms, training models,

and feedback loops).

We identify three main components of application-level

resource manager:

• Software life-cycle manager. Large-scale applications are

often developed and managed by large teams contributing
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all over the world. As a norm, they depend on large

code base consisting of millions of lines of open source

and proprietary code. This code is written in different

languages under different software licenses. For security,

compliance and software-quality reasons it is critical to

professionally manage code and deployment processes

(code repositories, building, testing, performance evalua-

tion, packaging, deployments, rolling upgrades, monitor-

ing, profiling, or debugging). In multi-cloud deployments,

it is critical that software is tested on all supported

platforms and that fleet management is able to perform

efficient and timely upgrades of all services (software

upgrades, VM and container restarts, etc.). Software life-

cycle manager would also manage the supported versions

of client-code running on user personal devices and

schedule their updates.

• Data storage and access manager. Large-scale appli-

cations generate and process large amount of data in-

cluding private user data and service logs containing

user-identifying data. In addition to protecting user data

according to service agreements, applications must also

satisfy the dynamic sets of local regulations such as

GDPR [5]. Data storage and access manager makes deci-

sions where to store the data (in the available databases,

object stores, and file-systems located in different geo

regions), how to store the data (for example, ensuring that

data is properly replicated or encrypted-at-rest), who can

access each data item (access control), and how to delete

the data (according to data-retention policies). Since the

cost of data access and storage changes over time, Data

storage and access manager is also responsible for data

migration, backup, and integrity inspection (for reliability,

disaster recovery, and compliance).

• Service execution manager. Large-scale applications run

on a fleet of nodes (dedicated physical machines and VM

instances in multiple public clouds) and clusters (Kuber-

netes, Spark, Hadoop, etc.). In order to achieve good

price-performance, a service execution manager must

monitor the performance and utilization of all services

and pipelines and then make decisions how to optimize

its fleet. Considering the lack of standard abstractions

in multi-cloud deployments, we expect that most large-

scale applications running on multi-cloud will evolve to

rely only on a subset of well supported infrastructure (for

example, VMs, Docker images and Kubernetes).

The application-level scheduler should act as a feedback-

loop controller that takes the real-time user traffic and the

current state of the system to model, tune and converge to

the desired state of multi-cloud infrastructure adequately. The

fine grained analysis of this traffic together with the desired

requirements sets the base point for the required changes.

Figure 4 shows the feedback loop of the scheduler that

derived from the relationship between the base point and the

Current Application State (observed values and parameters).

To minimize the differences with respect to this relationship,

every component of the application-level scheduler (Software

life-cycle manager, Data storage and access manager, and

Service execution manager) should have the responsibility of

brokerage, credentials management, monitoring and logging.

IV. CONCLUSION

Because of the various reasons enumerated in this paper,

globally distributed applications are commonly deployed in

multi-cloud. The challenge from a developer perspective with

multi-cloud deployments is that we still do not have com-

mon abstractions for the offered products and a standardized

way to express all of the application requirements. In this

paper, we contribute by making yet another case for multi-

cloud deployments and by predicting the emergence of a new

generation of application-level resource managers which will

natively support multi-cloud for enterprise applications. We

identify three main components with the brokerage capability

of the application-level resource managers: the software life-

cycle manager, the data storage and access manager, and the

service execution manager. We also outlined a feedback-loop

controller for predicting, changing and tuning the multi-cloud

infrastructure.
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