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Zoran Dimitrijević, Raju Rangaswami, David Watson, and Anurag Acharya.

Diskbench: User-level Disk Feature Extraction Tool. UCSB Technical

Report, April 2004.
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Zoran Dimitrijević and Raju Rangaswami. Quality of Service Support for

Real-time Storage Systems. Proceedings of the International IPSI-2003

Conference, St. Stefan, Serbia and Montenegro, October 2003.
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Zoran Dimitrijević, Raju Rangaswami, and Edward Chang. Virtual IO: Pre-

emptible Disk Access. Proceedings of the 10th ACM Conference on Multi-

media, Juan Les Pins, France, December 2002.
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Abstract

Quality-of-Service Scheduling in Storage Systems

by

Zoran Dimitrijević

Emerging video surveillance, large-scale sensor networks, and storage-bound

Web applications require large, high-performance, and reliable storage systems

with high data-throughput as well as short response times for interactive re-

quests. These conflicting requirements call for quality of service (QoS) sup-

port. Currently, the most cost-effective non-volatile storage technology for

large-volume data is based on magnetic disks.

In this dissertation, we first study the preemptibility of disk IOs. Allowing

higher-priority requests to preempt ongoing disk IOs is of particular benefit to

delay-sensitive interactive and real-time systems. We present the design and

implementation of Semi-preemptible IO [22], which divides disk IO requests

into multiple short-duration disk commands to improve the preemptibility of

disk access. We propose methods to allow preemption of each component of a

disk access — seek, rotation, and data transfer. We analyze the performance

and describe implementation challenges. Particularly, we explain disk profiling

algorithms for accurate disk-performance modeling. Our evaluation shows that

Semi-preemptible IO can substantially reduce IO waiting time with little loss

in disk throughput.
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We then investigate the effectiveness of preemptive disk-scheduling algo-

rithms to achieve better quality-of-service (QoS) scheduling. Large storage

systems are often implemented using Redundant Arrays of Independent Disks

(RAID). We present an architecture for QoS-aware RAID systems [24] that use

Semi-preemptible IO for servicing their internal disk IOs. We show when and

how to preempt IOs to improve the overall real-time performance of QoS-aware

RAID systems. In order to decide when to preempt an IO, we propose pre-

emptive scheduling methods which aim to maximize the total RAID QoS value.

In order to decide how to preempt an IO, we introduce two methods for IO

preemptions in RAID systems — JIT-preemption and JIT-migration.
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Chapter 1

Introduction

1.1 Motivation

Emerging applications such as video surveillance, large-scale sensor net-

works, storage-bound Web applications, and virtual reality require high-capacity,

high-bandwidth RAID storage to support high-volume IOs. All these appli-

cations typically access large sequential data-segments to achieve high disk

throughput. In addition to high-throughput non-interactive traffic, these ap-

plications also service a large number of interactive requests, requiring short

response time. The deployment of high-bandwidth networks promised by re-

search projects such as OptIPuter[87] will further magnify the access-time bot-

tleneck of a remote RAID store, inevitably making the access-time reduction

increasingly important.

What is the worst-case disk-access time, and how can it be mitigated? On an

idle disk, the access time is composed of a seek and a rotational delay. However,

when the disk is servicing an IO, a new interactive IO requiring short response

time must wait at least until after the ongoing IO has been completed. For the

applications mentioned earlier, the typical IO sizes are of the order of a few

megabytes. For example, while concurrently servicing interactive queries, the
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Google File System [35] stores data in 64 MB chunks and video surveillance

systems [17, 70] record video segments of several megabytes each. Another

example is a virtual-reality flight simulator from the TerraFly project [16], which

continuously streams the image data for multiple users from their database

of satellite images. Simultaneously, the system must support interactive user

operations.

Traditionally, disk IOs have been thought of as non-preemptible operations.

Once initiated, they cannot be stopped until completed. Over the years, op-

erating system designers have learned to live with this restriction. However,

non-preemptible IOs can be a stumbling block for applications that require

short response time. In this dissertation, we propose methods to make disk

IOs semi-preemptible, thus providing the operating system with a finer level of

control over the disk-drive.

Preemptible disk access is desirable in certain settings. One such domain

is that of real-time disk scheduling. Real-time scheduling theoreticians have

developed schedulability tests (the test of whether a task set is schedulable such

that all deadlines are met) in various settings [46, 48, 51]. In real-time scheduling

theory, blocking1, or priority inversion, is defined as the time during which a

higher-priority task is prevented from running due to the non-preemptibility

of a low-priority task. Blocking degrades schedulability of real-time tasks and

is thus undesirable. Making disk IOs preemptible would reduce blocking and

improve the schedulability of real-time disk IOs.

For example, suppose that the disk is servicing a long low-priority sequen-

tial write when a higher priority read IO arrives. Now, a simple priority-based

scheduler will always preempt the long sequential write access (and incur a

preemption overhead) regardless of whether the read IO arrives soon after the

beginning of the low-priority write or nearly at the end of the long write. How-

1In this dissertation, we refer to blocking as the waiting time.
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ever, preempting a nearly-completed write access may not be profitable. Such

a preemption is likely to be counter-productive — not gaining much in the read

response time, but incurring preemption overhead. This example shows just one

simple scenario where additional mechanisms can lead to performance gains for

storage systems.

Thesis Statement

In this dissertation we aim to prove the following thesis: With the low-level

disk model, it is feasible to enable effective preemptions of disk IOs and to

employ this explicitly-preemptive approach in designing quality-of-service disk-

scheduling algorithms.

1.2 Contributions

In summary, the main contributions of this dissertation are:

• Preemptible disk scheduling. We investigate the preemptibility of

disk access and show that a high-level of preemptibility can be achieved for

current disk drives. We design and implement Semi-preemptible IO [20, 22]

prototype.

• Preemptive RAID scheduling. We investigate the effectiveness of

preemptive disk-scheduling algorithms to achieve better quality of service

in RAID systems [23, 24]. We present an architecture for QoS-aware RAID

systems that use Semi-preemptible IO for servicing internal disk IOs. We

show when and how to preempt IOs to improve the overall performance

of the RAID systems.

• Disk profiling. We implemented Diskbench [25, 29], a tool for low-level

disk profiling and modeling. Based on accurate low-level disk models, we
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investigated admission control methods for real-time streaming applica-

tions [21, 69] and Semi-preemptible IO [22, 20].

1.3 Dissertation Outline

In Chapter 2, we present several important classes of real-time applications

and classify their data QoS requirements.

In Chapter 3, we explain the architecture of magnetic disks in details. We

present algorithms and methods used for low-level disk profiling and modeling.

The main focus of this dissertation is on methods and ideas presented in

Chapters 4 and 5.

In Chapter 4 we investigate the preemptibility of disk access and present the

design and implementation of Semi-preemptible IO [22].

In Chapter 5 we focus on QoS RAID scheduling. We first extend our Semi-

preemptible IO to RAID systems. We then present an approach for preemptive

RAID scheduling. Additionally, we present the kernel-level implementation of

our QoS extensions for Linux [19, 24, 27].

In Chapter 6, we survey the previous work relevant to disk modeling and

profiling, preemptible disk access, and preemptive RAID scheduling.

In Chapter 7, we summarize the main contributions of this dissertation and

suggest directions for future work.

4



Chapter 2

Quality of Service in Storage

Systems

In this chapter, we present several classes of storage-bound applications and

classify their data QoS requirements. We then explain the underlying tech-

nology for accessing current storage systems. Finally, we present two example

applications with real-time QoS requirements.

2.1 Introduction

The performance and capacity of commodity computer systems have im-

proved drastically in recent years. An increasing number of emerging appli-

cations, such as video streaming, video surveillance, virtual reality, scientific

and environmental data gathering, digital libraries, or distance learning, re-

quire various Quality of Service (QoS) guarantees for data access. For example,

they require guaranteed real-time streaming for video or scientific detector data,

but guaranteed response time for interactive or high-priority data. These appli-

cations increasingly run on commodity systems. However, commodity systems

still lack sufficient QoS support for their storage subsystems.
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QoS support for real-time storage systems has been an active field of research

throughout the past decade. Still, exponential improvements in computational

power, disk performance, high-speed local-area networks, and broadband Inter-

net connections are constantly enabling new applications. These applications

demand not only large storage space and high-performance access, but also

better operating system support for disk quality of service.

2.1.1 Storage-bound Real-time Applications

Traditional real-time systems do not use disks to store data and typically

operate using only the random-access main memory. An example of these sys-

tems is the embedded control system in cars and aeroplanes. On the other

hand, the applications that we target have large storage requirements and the

only cost-effective solution is to use disks as their main storage medium [62].

Table 2.1 summarizes several important storage-bound real-time applications.

Application Storage access Bottlenecks

Video-on-Demand read-only storage, network
Video surveillance write-mostly storage, CPU
Digital libraries read-mostly storage, CPU
Distance learning read-write network, storage
Virtual reality read-write CPU, network, storage
Scientific write-mostly storage, network

Table 2.1: Storage-bound real-time applications.

Video-on-Demand applications provide streaming video concurrently to mul-

tiple clients. Clients can issue interactive video requests (for example, fast for-

ward, slow motion, instant replay, or pause/resume). Traditional solutions are

designed for local-area network video streaming, and system bottlenecks are in

the storage subsystem. With the proliferation of broadband Internet access,
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global Video-on-Demand systems are becoming more popular. These systems

also have bottlenecks in the network management.

Video surveillance applications [50, 70] manage a large number of video

streams from surveillance cameras, which need to be reliably recorded to a stor-

age system. At the same time, security personnel need to monitor a subset

of video streams in real-time, creating additional read traffic. Emerging solu-

tions for automatic video processing, including suspicious event detection and

data mining techniques, also create large computational and database query-

processing requirements for video surveillance systems.

Digital libraries manage a large number of heterogeneous multimedia data,

including text, images, audio, and video. These heterogeneous data have dif-

ferent QoS requirements and the underlying storage subsystem needs to handle

them differently. In addition to mostly read data access for digital libraries,

emerging distance learning applications need to handle interactive real-time

video/audio streaming (both read and write) and dynamic changes to their

databases.

Virtual reality applications are still mainly developed in research labs. How-

ever, the large storage requirements for representation of complex virtual worlds

and the inherent interactivity requirements for storage access make QoS support

for their storage systems a necessity.

Scientific applications with real-time storage requirements usually handle

a large number of real-time sensors. Data obtained from these sensors have

to be reliably recorded to a storage system, since scientific experiments are

sometimes hard or impossible to repeat. Examples of these applications are

high-energy particle research [8] and the SETI (Search for Extraterrestrial In-

telligence) project [81].
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2.1.2 QoS Requirements for Storage Systems

The general requirements for large-scale storage systems include high avail-

ability, high reliability, ease of manageability, large storage space, and high-

performance access. With the proliferation of applications that require both

large-scale storage and real-time data access, traditional solutions for building

storage systems have to be revisited [98, 99].

Traditional storage systems are designed to provide high performance, best

effort, and fair service to all clients. This is sufficient for traditional applications

that do not require real-time data access. However, in order to support real-time

applications, we identify the following requirements for storage access.

• Differentiated service. Most real-time applications require both real-time

and traditional best-effort data access. This means that a storage system

should differentiate IO requests and service them according to their QoS

requirements. In effect, this requires that each IO request is associated

with its QoS requirements.

• Guaranteed-latency response. Some IO requests have to be serviced before

their deadlines. Examples for these requests are video data retrieval that

must finish before displaying or kernel access to virtual memory on the

disk after page faults for high-priority jobs.

• Guaranteed-rate streaming. Streaming data with soft or hard real-time

guarantees are often read from and written to a storage system. In order

to consistently guarantee their streaming rate, a storage system must em-

ploy an admission control which ensures that once admitted, streams get

sufficient data throughput. Examples for these streams are surveillance

video and scientific detector data.

• Low latency and high-throughput. Best-effort data still requires low latency

and high-throughput access, and a storage system must employ scheduling

8



algorithms that provide the high-performance access for best-effort IO

requests, while satisfying guarantees for real-time IOs.

2.2 Storage

The architecture for data storage is usually based on multiple layers of medi-

ums with different price-performance characteristics. Modern processors oper-

ate on data in their local registers. In order to efficiently access data in main

memory (usually implemented as DRAM modules), designers employ multiple

layers of fast caches between the CPU registers and the main memory. These

caches are often implemented on the same die as CPUs and provide various

levels of access performance. Both the main memory and caches are considered

as volatile memory, since they lose content after losing their power supply.

2.2.1 Magnetic Disks

Currently, the main non-volatile storage is based on magnetic disks. For

large-volume data, the main storage is usually implemented using redundant

arrays of independent disks (RAID) [14, 31]. Disks provide the best price-

performance ratio for many storage-bound applications. D. A. Thompson and

J. S. Best [95] published an in-depth study about the trends and the future of

magnetic data storage. We present a detailed study on the architecture and

profiling of magnetic disk drives in Chapter 3.

Backup Storage

For backup storage, current systems use both magnetic tapes and optical

disks. Additionally, due to reduced cost of magnetic disk storage [95, 39], many

applications can use magnetic disks exclusively to backup their data.
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2.2.2 Emerging Technologies

Even after the long reign of Moore’s Law, the basic memory hierarchy in

computer systems has not changed significantly. At the non-volatile end, mag-

netic disks have managed to survive as the most cost-effective mass storage

medium, and there are no alternative technologies which show promise for re-

placing them in the next decade [95]. Disk access times are improving at the

rate of only 10% per year. For more than a decade they have continued to

lag behind the annual disk throughput increase of 40% and capacity increase of

60% [39, 95]. Due to the increasing gap between the improvements in disk band-

width and disk access times (both seek time and rotational delay), achieving

high disk throughput necessitates accessing the disk drive in larger chunks.

Micro-electro-mechanical-systems (MEMS) based storage is an emerging

technology that promises to bridge the performance gap between magnetic disks

and DRAM [7, 97]. MEMS devices are predicted to be an order of magnitude

cheaper than DRAM, while offering an order of magnitude faster access times

than disk drives [40, 78]. These devices offer a unique low-cost solution for

streaming applications. In our related work [69], we have investigated the pos-

sibility of using MEMS storage for buffering and caching streaming multimedia

content. We proposed an analytical framework to evaluate the effective use of

MEMS devices in a streaming media server. Specifically, we derived analytical

models for studying two MEMS configurations, using MEMS storage as a buffer

between DRAM and disk, and using MEMS storage as a cache. Summarizing

our findings, MEMS storage can improve the performance of streaming me-

dia servers by providing low-access latency and high throughput for accessing

streaming data.
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2.3 Overview of Disk Management Techniques

In this section, we survey the representative work in disk scheduling, disk

admission control, and data placement.

2.3.1 Disk Scheduling

Table 2.2 depicts several approaches for best-effort, real-time, and hetero-

geneous (mixed-media) disk scheduling. Disks can be classified as non-volatile

storage devices with non-uniform memory access. In terms of data throughput,

the best performance is achieved when the disk access is sequential. However,

file systems cannot always place and access data sequentially, since various ap-

plications have inherent random data access patterns.

Best-effort Real-time Heterogeneous

FCFS Rate-monotonic GSS
SSTF EDF Cello
SATF SCAN-EDF ∆L (clockwise FS)
SCAN EDL User-safe disk
C-SCAN Round-robin MARS
Freeblock Bubble-up

Table 2.2: Disk schedulers.

Worthington et al. [102] survey the scheduling algorithms for traditional,

best-effort disk access. FCFS (First-Come-First-Serve) approach schedules disk

IO requests in the order in which they arrive. Because disk seek times differ

drastically and FCFS does not optimize disk seeking, this approach leads to

poor utilization of disk throughput when the IO sizes are small and the access

is random.

SSTF (Shortest-Seek-Time-First) and SATF (Shortest-Access-Time-First) [45]

methods use greedy heuristics in order to minimize disk seeking. SSTF sched-
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ules the IO in the waiting queue that requires the shortest seek time relative

to the current disk arm position. Similarly, SATF schedules the IO that re-

quires the shortest access time (which includes both seek time and rotational

delay) relative to the current disk position. While both methods achieve good

disk throughput utilization by minimizing access overheads, they do not pre-

vent starvation. Some IO requests can spend a long time in the queue and the

maximum latency is not bounded.

SCAN and C-SCAN algorithms use a simple elevator principle which solves

starvation and reduces disk seeking [86, 102]. In SCAN, the disk arm starts from

one end of the disk and moves to another, servicing IO requests on the way. In

C-SCAN, the disk arm services IO requests only in one direction (usually in

increasing order of disk blocks, which means from outer portions of the disk

towards the inner ones). SCAN and C-SCAN guarantee non-starvation, but

still an IO request can spend a long time in the queue. To prevent this, the

OS usually bounds the number of requests that are serviced in one SCAN turn.

This also bounds the maximum latency for each IO request. Most commodity

operating systems use a variation of this simple elevator principle for best-effort

disk scheduling.

SSTF and SATF require a disk model in order to predict disk seek and

access times, which is not required for SCAN algorithms. This is the reason

why the versions of SCAN and C-SCAN are the most widely currently used disk

schedulers. Recently, several scheduling algorithms that rely on detailed disk

models are designed to improve disk access [22, 52, 53]. Freeblock scheduling [52,

53] uses rotational prediction to schedule low-priority IOs in the background

without affecting other IOs. Semi-preemptible IO [22] schedules IO requests

using multiple fast-executing disk commands and enables disk access preemption

between them.
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Real-time disk scheduling algorithms consider additional real-time require-

ments when servicing disk IOs. These algorithms can be classified in the fol-

lowing two high-level classes.

• Deadline-based schedulers. Each disk IO is associated with a deadline. The

disk scheduler should service all IOs before their deadlines. Examples for

these schedulers are rate-monotonic, EDF, SCAN-EDF, and EDL [62].

• Cycle-based schedulers. All real-time disk IOs are serviced in cycles and

they all share the common deadline — the disk scheduler should service

all IOs before the cycle expires. Examples for these schedulers are round-

robin [86], bubble-up [9], and bubble-up 2D [11].

The deadline-based schedulers are more general schedulers since one can

implement the cycle-based scheduling using deadlines (by setting deadlines for

all IOs in a cycle to the cycle’s end). However, for real-time streaming, which is

the most common case, cycle-based schedulers are more natural and can provide

easier and more efficient admission control.

Heterogeneous disk schedulers support scheduling for both best-effort and

real-time IOs. In Group Sweeping Strategy (GSS) [12], requests are serviced

in cycles, in round-robin manner. To provide the requested guarantees for con-

tinuous media data, GSS introduces a joint deadline mechanism: it assigns one

joint deadline to each group of streams. This deadline is specified as being the

earliest one out of the deadlines of all streams in the respective group. Streams

are grouped in such a way that all of them comprise similar deadlines.

Cello [84] employs a two-level disk scheduling architecture, consisting of

a class-independent scheduler and a set of class-specific schedulers. The two

levels of the framework allocate disk bandwidth at two time-scales: the class-

independent scheduler governs the coarse-grain allocation of bandwidth to ap-

plication classes, while the class-specific schedulers control the fine-grain in-

terleaving of requests. Symphony [83] multimedia file system supports diverse
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application classes that access data with heterogeneous characteristics using

Cello framework.

Clockwise [5] is a real-time file system that schedules best-effort and real-

time disk requests so that real-time disk requests are serviced before their dead-

lines and the best-effort requests are serviced as quickly as possible without

violating real-time deadlines. It is based on non-preemptible EDF scheduling.

User-safe disks [64] export a virtual device interface to a number of different

clients. They provide the protection necessary to ensure that applications can-

not violate the system integrity and ensure the guaranteed QoS for each client’s

data access.

MARS [6] is a scalable web-based multimedia-on-demand system. To pro-

vide fair guaranteed access to storage bandwidth, it uses multiple-priority queues

and services them with a deficit-round-robin (DRR) fair queueing algorithm

within the SCSI driver. Their DRR-based SCSI system provides efficient shar-

ing of resources between real-time and non-real-time disk requests.

2.3.2 Disk Admission Control

Admission Control is a mechanism for deciding if a particular request can

be admitted into the system or not. We classify the disk admission control

approaches into the following three categories:

• Best effort. Best-effort approaches admit all requests into the system.

When the disk cannot service all requests by their deadlines, the system’s

QoS deteriorates. Systems that use the best-effort approach usually dis-

tinguish between different requests, and try to first reduce the QoS for

less important requests.

• Deterministic. Deterministic approaches admit only requests that can be

serviced with their required QoS. These methods use either worst-case

14



assumptions (that usually lead to low disk utilization) or rely on low-

level disk models [25, 76, 101] to predict disk performance. The problem

with these approaches is the inherent variability in QoS requirements for

various data. For example, compressed videos do not have a constant

bit-rate, but in order to deterministically guarantee real-time streaming,

admission control must use the maximum expected bit-rates. This leads

to suboptimal disk utilization.

• Statistical. Statistical approaches monitor system performance and use

various heuristics to predict if they are able to admit a new request or

not. This usually means that they can provide only soft guarantees. How-

ever, they can utilize the disk better than deterministic approaches. If the

system can provide different QoS for different requests, one can use the

deterministic admission control for important requests and various sta-

tistical approaches for other IO requests. We proposed several statistical

admission control methods while designing Xtream [21] and compared

their performance with the deterministic approach.

2.3.3 Data Placement

A number of data placement solutions have been proposed for both single

disk and multiple disk systems. Initial solutions for placing data on single disk

systems were proposed in the UNIX Fast File System (FFS) [57], which pro-

posed the notion of cylinder groups to place related data closer on the disk

surface. Log-structured placement [72] proposed performing all stream writes

sequentially in large contiguous free space on disk to reduce the overhead for

write operations at the cost of sub-optimal stream retrieval. Other single disk

placement strategies include multi-zone placement [68], constrained block allo-

cation [65], track extents [77], etc. Multi-zone placement proposes matching of

stream bit-rates to zone bit-rates so that the disk throughput is utilized better.
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Constrained block allocation controls the separation of successive stream blocks

on the disk to reduce access overheads. Track extents proposes allocating and

accessing related data on disk track boundaries, to avoid excessive rotational

latency and track crossing overheads.

For multiple disk systems, the additional design goal is that of load-balancing.

Striping proposes scattering bytes (fine-grained striping) or blocks (coarse-grained

striping) of data across the disks to increase the throughput of the disk array

system using concurrent access. In [10], the authors argue that for streaming

applications, operating the disks in the disk array independently rather than

striping is better in terms of memory use. Another approach to load-balancing

in a disk array system is random duplicated assignment [49], in which each data

object is replicated and the copies are placed randomly on two disks. This offers

reliability and extendibility apart from lowering response times and RAM costs.

Another approach to reliability is using a parity disk as in RAID [60] to detect

and correct errors on the disk surface.

2.4 Example Applications

In this section, we present our two testbed applications for QoS disk sched-

ulers: the Xtream Multimedia System [21] and the SfinX video surveillance

system [30, 70].

2.4.1 The Xtream Multimedia System

Xtream [21] is a video streaming system that supports guaranteed-rate IO for

both write (for example, recording by a surveillance camera) and read streams

(for example, audio or video playback).

The Xtream service model consists of one or more clients connecting to a

server to request multimedia data stored on the server’s disk drive. The client
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could be desktop requesting a video-on-demand service, a surveillance camera

recording video, or simply a web-browser requesting html data. In this model,

we assume that no bottleneck exists in the interconnection network between the

server and the clients.

IO Scheduler

Admission
Controller

Request
Handler

DRAM

Decoder

Client
Proxy

UNIX
Pipe

XTREAM Server

XTREAM Client

So
ck

et

Disk

Figure 2.1: Xtream system architecture.

As shown in Figure 2.1, the Xtream clients include a proxy component which

connects to the server on their behalf and also performs data buffering to mask

network bandwidth variations. The client is designed such that it can oper-

ate with any encoder or decoder application that supports a UNIX pipe-like

interface.

The Xtream server runs entirely in user space. Its two functions are to decide

if it can admit a new stream and to maintain the QoS for existing streams.

The three requirements of the Xtream server — high throughput, low initial

latency, and guaranteed IO — are addressed by the three components within

Xtream. The IO Scheduler uses the time cycle model [66] for servicing disk

IOs; the Request Handler preempts the IO scheduler for servicing new requests

promptly; the Admission Controller guarantees QoS for soft-real-time streams

while ensuring that non-real-time data retrievals are not starved. Xtream uses a

Disk Profiler [28] to obtain a realistic model required to predict disk performance

and provide real-time streaming guarantees.
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IO Scheduler

Xtream adopts a single-thread IO paradigm wherein the IO scheduler per-

forms all disk IOs inside a single thread. It uses the time cycle model [66], which

divides time into basic units called time cycles (T). In each cycle, Xtream ser-

vices exactly one disk IO per stream. The size of the IO is chosen so that the

display buffer does not underflow before the next IO for the same stream is

performed. Unlike that in the original time cycle model, the scheduling order

for stream IOs may vary between cycles. Using a double buffer for each stream,

which can sustain playback for as much as two time cycles, makes the initial

latency bound independent of the number of streams being serviced and reduces

it to the duration of a single disk IO (see Section 2.4.1). In contrast, the simple

multi-threaded approach services each stream using a dedicated thread. Four

advantages of the single-thread IO paradigm used in Xtream are:

Deterministic execution: Since a single thread is performing all disk IOs,

the IO schedule is deterministic, which enables soft-real-time guarantees. In

the multi-threaded IO model, the OS scheduling determines the IO order, and

we cannot predict when any IO will be serviced.

Controlled IO variability: IO variability is defined as the fluctuations in time

between successive IOs for the same stream. Large IO variability requires more

in-memory buffering and increases the system cost. The single-thread model

controls IO variability by performing at least one IO for each stream in each

cycle. This approach is not possible in the simple multi-threaded design.

Contiguous IOs: Since the operating system might break up a large IO

request into multiple small ones, an IO operation for a single stream might

incur multiple disk accesses simply due to thread-switching in a multi-threaded

design. However, in the single-threaded design, the operating system cannot

interleave IOs for different streams, which ensures that an IO operation to the

disk is indeed sequential.
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Fairness: In the single-thread IO model, we can incorporate service for

non-real-time requests simply by reserving a fixed portion of each cycle for non-

real-time jobs.

A similar approach is employed in the design of the Google File System [35].

Request Handler

When a new request arrives in the Xtream system, the request handler mod-

ule is invoked to service it. The request handler, in turn, invokes the admission

controller to determine if the new request can be serviced. If it can, the request

handler preempts the IO scheduler as soon as it finishes its current IO job. It

then adds the request to the head of the IO service queue, which is used by

the IO scheduler to determine the service order. We can make the following

observations for this approach:

• The initial latency does not depend on the number of streams in the

system. It is simply the sum of the maximum time required to service a

single IO for any existing stream and the time required to perform the

initial IO for filling up the buffer of the new stream. This approach comes

at the cost of double buffering, which frees the IO scheduler from having

to maintain the same IO order between time cycles. If required, the initial

latency can be further decreased by using preemptible disk access methods

proposed in [22].

• The double buffering scheme also frees IO scheduler from using fixed-

stretch [10], in which the IO for a stream must be started exactly at

the same time relative to the beginning of each cycle. In a system which

services both real-time streams and non-real-time requests, a fixed-stretch

IO restriction might lead to under-utilization of disk bandwidth because of

variability in both the number of streams and their bit-rates. In contrast,

the double buffering scheme can tolerate these phenomena easily.
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The Xtream admission controller is explained in Section 3.3.2 in Chapter 3.

2.4.2 The SfinX Video Surveillance System

In a surveillance system, video signals are generated by multiple cameras

with or without spatially and temporally overlapping coverage. These signals

need to be compressed, fused, stored, indexed, and then summarized as semantic

events to allow efficient and effective querying and mining.

The target application that we intend to support would be capable of not

only viewing video streams in real-time, but also supporting scan operations

(like rew, ffwd, slow-motion, etc.) on the video streams. In addition, it would

also support video analysis in the form of database queries. A query, for in-

stance, can be worded like this: “select object = ‘vehicles’ where event = ‘cir-

cling’ and location = ‘parking lots’ and time = ‘since 9pm last night’.” Another

example-query might be “select object = ‘vehicle A’ where event = ‘*’ and

location = ‘*’ and time = ‘since 9pm last night’.”

In this section, we introduce the hardware and software architecture of the

SfinX video surveillance system [30, 70]. Figure 2.2 depicts a typical hardware

architecture of SfinX. Cameras are mounted at the edges of a sensor network

to collect signals (shown on the upper-right of the figure). When activity is

detected, signals are compressed and transfered to a server (lower-left of the

figure). The server fuses multi-sensor data and constructs spatio-temporal de-

scriptors to depict the captured activities. The server indexes and stores video

signals with their meta-data on RAID storage (lower-right of the figure). Users

of the system (upper-left of the figure) are alerted to unusual events and they

can perform online queries to retrieve and inspect video-clips of interest.

Figure 2.3 depicts the software architecture of SfinX. Video signals are cap-

tured by the video capture module. At the same time tracking algorithms are

employed to track objects in the captured video streams and the video stream is
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encoded and sent off to be stored onto Xtream [21], a real-time streaming storage

system. To aid in effective tracking of occluded objects and to obtain consensus

on object position in ambiguous situations, a multi-tracker module combines

the tracking information from different cameras which cover a common phys-

ical area and feeds back global information to the individual camera tracking

modules. Multiple multi-trackers also exist, which track objects in physically

disjointed areas.

Using the global tracking information and object representation created by

the multi-tracker modules, the fusion and representation module maps the tra-

jectory of each object as it moves through the entire scene. The representation

module represents the trajectory of each object using sequence data representa-

tion [103]. This information is stored in the events database for future reference.

The user-interface consists of two distinct components. First, using the real-
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time monitoring component, a user can view live camera feeds and interact

with them in order to scan through the video streams. This helps the user

to immediately track objects by moving through any stream at will. Second,

the viewer can also analyze the stored video streams by performing database

queries. Controlling the query semantics, the user can get detailed information

from the database.
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System Components

We now present the major components of the SfinX system. We analyze each

component of the software architecture and describe the interaction between

various components.

Video Capture

For capturing video streams, we propose using multiple, cheap, off-the-shelf

video cameras for each physical location requiring surveillance. These cameras

share data between themselves to perform their functions with greater accuracy.

Similar to a previous study [105], we use a single high-end camera per location

possessing zoom and motion capabilities for tracking objects or humans in close-

up. The most important problem in capturing useful information from a scene

is that of camera callibration [32]. Ideally, this must be an automatic process,

that maps the camera co-ordinates to co-ordinates in the physical location. In

addition, the close-tracking high-end camera must be perfectly callibrated at all

times in spite of zoom and motion operations.

Encoding and Real-time Storage

The video stream obtained from each camera is encoded using standard

encoding algorithms like H.263, MPEG1, or MPEG4. Each stream is then

stored using a real-time storage system like Xtream [21] for future viewing

purposes. The storage system provides real-time stream retrieval and supports

scan operations like rew, ffwd, and slow-motion. The main sub-components of

the real-time storage component are: data placement, admission control, disk

scheduling, and backup manager.

The data placement module makes decisions about data placements using

global knowledge about all storage nodes and the QoS requirements for each

IO request. The placement decisions can be short-term (for example, for each
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database update) or long-term (for example, the placement for the next one

hour of a particular video stream). The data placement module consults the

admission control module to check if a particular placement satisfies the real-

time access requirements. It also manages data redundancy for reliability.

The disk scheduling module is responsible for local disk scheduling and buffer

management on each storage node. SfinX uses time cycle scheduling [67] for

guaranteed-rate real-time streams. The basic time cycle model is extended to

support non real-time IO requests with different priorities (high-priority, best-

effort, and background IO). To achieve short latency for high-priority requests

while maintaining high disk throughput, SfinX uses preemptible disk schedul-

ing [22].

The backup manager module is responsible for deciding which data to copy

from main storage to backup and when. The volume of video data in SfinX is

large, of the order of TB/day. Since the main SfinX storage is designed to be

reliable, backup is mainly used to filter its data and to keep only the important

data in main storage.

Tracking and Multi-tracking

Tracking refers to the process of following and mapping the trajectory of

a moving object in the scene. Moving objects in each camera feed are tracked

using real-time tracking algorithms [88, 17]. Using the information about motion

trajectory, the high-end camera may be used to follow the moving object in

close-up.

Multi-tracking combines the tracking information from different cameras

monitoring the same physical location. It uses the global knowledge thus ob-

tained to aid in tracking objects which are occluded for individual cameras. It

can also use this global information to reach consensus when individual tracking

modules disagree on object positions. The multi-tracker feeds this global infor-
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mation back to the individual camera tracking modules. Each physical location

employs a multi-tracker to combine the information from individual cameras at

that location.

Fusion and Representation

Using the global tracking information and object representation created by

the multi-tracker modules, the fusion and representation module maps the tra-

jectory of each object as it moves through the entire scene. The representation

module represents the trajectory of each object using sequence data represen-

tation [103]. To arrive at a reasonable representation, the trajectory of each

object is smoothed using Kalman filters [47] to obtain a piecewise linear trajec-

tory. This piecewise-linear trajectory is then represented using sequence data

representation.

Event Recognition

Event recognition translates to the problem of recognizing spatio-temporal

patterns under extreme statistical constraints. It deals with mapping motion

patterns to semantics (for example, benign and suspicious events). Recognizing

rare events comes up against two mathematical challenges. First, the number of

training instances that can be collected for modeling rare events is typically very

small. Let N denote the number of training instances, and D the dimension-

ality of data. Traditional statistical models such as the Hidden Markov Model

(HMM) cannot work effectively under the N < D constraint. Furthermore,

positive events (i.e., the sought-for hazardous events) are always significantly

outnumbered by negative events in the training data. In such an imbalanced

set of training data, the class boundary tends to skew toward the minority class

and hence results in a high incidence of false negatives.
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Querying and Monitoring

Monitoring allows retrieving videos efficiently via different access paths.

Video data can be accessed via a variety of attributes, e.g., by objects, tempo-

ral attributes, spatial attributes, pattern similarity, and by any combination of

the above. We support retrieval of videos with trajectories that match a given

SQL query definition. At the same time, the storage system must also support

viewing of stored videos. The infrastructure also supports real-time monitor-

ing of camera streams. However, simultaneously supporting high-throughput

writes (recording encoded videos) and quick response reads (retrieving video

segments relevant to a query) presents conflicting design requirements for mem-

ory management, disk scheduling, and data placement policies at the storage

system.

2.5 Summary

In this chapter, we have first presented a brief overview of QoS require-

ments for several classes of storage-bound applications. We then briefly surveyed

data-management techniques for accessing storage systems — particularly disk

scheduling, admission control, and data placement techniques. Finally, we pre-

sented two example applications with real-time QoS requirements.
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Chapter 3

Disk Modeling and Profiling

In this chapter, we explain the architecture and performance of magnetic

disks in detail. We present several approaches for disk modeling and explain

methods for automatic low-level disk profiling. The disk profiler automatically

extracts low-level block mappings, rotational factors, seek curves, and buffer

parameters.

3.1 Introduction

The performance gap between hard drives and CPU-memory subsystems

is steadily increasing. In order to bridge this gap, operating systems can use

advanced disk management strategies [42, 45, 53, 93, 102], which often require

detailed knowledge about disk parameters, such as zoning, bad-sector locations,

and disk latency. Some of these parameters can be obtained from disk manu-

facturers. However, the information they provide can be imprecise and static,

or simply unavailable. For instance, disk vendors usually give out only the

maximum, minimum, and average data transfer rates and seek times. In ad-

dition, some dynamic information such as the locations of bad sectors cannot

be known prior to actual use. As a consequence, the effectiveness of most disk
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management strategies can be compromised due to disk model imperfections.

For optimal disk performance, it is necessary to tune disk access to the

requirements of the application. For example, a multimedia streaming server

must predict disk performance to maintain real-time streaming without under-

utilizing the disk. However, disk abstractions (for example, SCSI and IDE

interfaces) hide low-level device characteristics from the operating system and

virtualize access to the device in the form of logical disk blocks. Such de-

vice abstractions make the task of tuning disk operation to match application

requirements (and thus improving IO efficiency) difficult. In this chapter we

present Diskbench, a tool for disk profiling. Diskbench consists of two appli-

cations, Scsibench and Idextract. Scsibench [29] runs in user space on Linux

systems and accesses SCSI disks through the Linux SCSI generic interface [38].

Scsibench uses interrogative and empirical methods for feature extraction in a

manner similar to the previous work done in disk profiling [1, 101, 76, 91]. Idex-

tract uses Linux raw disk access and empirical methods to extract features from

any disk-like device (the approach used by Patterson et al. [91]). Scsibench is

open source and available for download [26].

Using Diskbench, we can obtain many low-level disk features including 1)

rotational time, 2) seek curve, 3) track and cylinder skew times, 4) caching and

prefetching techniques, and 5) logical-to-physical block mappings. Diskbench

also extracts several high-level disk features useful for real-time disk schedulers.

In this chapter we present two important high-level features: optimal chunk

size for sequential disk access and admission control curves for cycle-based real-

time disk schedulers. In addition, we show that the access time (including seek

time and rotational delay) between two disk accesses can be predicted with high

accuracy using a disk model obtained through Scsibench profiling. Scsibench

can additionally perform a trace-driven execution with accurate timing mecha-

nisms (for example, SCSI read, write, seek, enable/disable cache, etc.). Using

knowledge about disk features and trace support, system or application pro-
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grammers can obtain information about the precise distribution of time spent

by the disk performing various operations. Bottlenecks can thus be identified,

and scheduling can be adjusted accordingly to utilize the disk more efficiently.

We successfully used Diskbench during the design and implementation of three

real-time storage systems: Xtream [21], SfinX [30, 70], and Semi-preemptible

IO [20, 22].

The Xtream multimedia system [21] provides real-time video streaming ca-

pability to multiple clients simultaneously. For video playback, the disk man-

agement must guarantee that all IOs meet their real-time constraints. If the

system does not have information about low-level disk features, it must assume

the worst-case IO time or use statistical methods. These pessimistic and sta-

tistical estimates of disk drive performance lead to sub-optimal performance of

the entire system. In contrast, Xtream uses Diskbench to obtain the required

disk features for making accurate admission control decisions.

The SfinX video surveillance system [30, 70, 103] is an ongoing project at

UCSB, which uses Diskbench for its storage subsystem. The SfinX’ storage sub-

system needs to support real-time streaming (the write streams from surveil-

lance cameras as well as the read streams for surveillance monitoring and data

mining), various high-priority IOs for interactive operations, and a high volume

of traditional best-effort IOs.

Semi-preemptible IO [20, 22] is an abstraction for disk IO, which provides

preemptible disk access with little loss in disk throughput. Semi-preemptible

IO relies on accurate disk-access predictions. The implementation of Semi-

preemptible IO was made feasible due to Scsibench, which extracts essential

disk information for accurate disk-performance modeling.
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3.2 Disk Architecture

Before we get into the details of disk features that are of interest when

designing high-performance real-time systems, we provide a brief overview of

disk architecture. The main components of a typical disk drive are:

• One or more disk platters rotating in lockstep fashion on a shared spindle,

• A set of read/write heads residing on a shared arm moved by an actuator,

• Disk logic, including the disk controller, and

• Cache/buffer memory with embedded replacement and scheduling algo-

rithms.

The data on the disk drive is logically organized into disk blocks (the mini-

mum unit of disk access). Typically, a block corresponds to one disk sector. The

set of sectors that are on the same magnetic surface and at the same distance

from the central spindle form a track. The set of tracks at the same distance

from the spindle form a cylinder. Meta-data such as error detection and cor-

rection data are stored in between regular sectors. Sectors can be used to store

data for a logical block, to reserve space for future bad sector re-mappings (spare

sectors), or to store disk meta-data. They can also be marked as “bad” if they

are located on the damaged magnetic surface.

The storage density (amount of data that can be stored per square inch) is

constant for magnetic surfaces (media) used in disks today. Since the outer disk

tracks are longer, they can store more data than the inner ones. Hence, modern

disks do not have a constant number of sectors per track. Disks divide cylinders

into multiple disk zones, each zone having a constant number of sectors per

track (and hence having its own performance characteristics).

The rotational speed of the disk is constant (with small random variations).

Since the track size varies from zone to zone, each disk zone has a different raw
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bandwidth (data transfer rate from the disk magnetic media to the internal disk

logic). The outer zones have a significantly larger raw disk bandwidth than the

inner ones.

When the disk head switches from one track to the next, some time is spent

in positioning the disk head to the center of the next track. If the two adjacent

tracks are on the same cylinder, this time is referred to as the track switch

time. If the tracks are on different cylinders, then it is referred to as cylinder

switch time. In order to optimize the disk for sequential access, disk sectors are

organized so that the starting sectors on two adjacent tracks are skewed. This

skew compensates for the track or cylinder switch time. It is referred to as track

skew and cylinder skew for track and cylinder switches respectively.

The seek time is the time that the disk arm needs in order to move from

its current position to the destination cylinder. In the first stage of the seek

operation, the arm accelerates at a constant rate. This is followed by a period

of constant maximum velocity. In the next stage, the arm slows down with

constant deceleration. The final stage of the seek is the settle time, which is

needed to position the disk head exactly at the center of the destination track.

Since the disk seek mainly depends on the characteristics of the disk arm and its

actuator, the seek time curve does not depend on the starting and destination

cylinders. It depends only on the seek distance (in cylinders).

The disk magnetic surfaces inevitably contain defects because the process of

making perfect surfaces would be too expensive. Hence, disk low-level format

marks bad sectors and skips them during logical block numbering. Additionally,

some disk sectors are reserved as spare, to enable the disk to re-map bad sectors

that occur during its lifetime. The algorithm for spare sector allocation differs

from disk to disk. In order to accurately model the disk for intelligent data

placement, scheduling, or even simple seek curve extraction, a system needs de-

tailed mapping between the physical sectors and the logical blocks. In addition

to mapping, a system must be able to query the disk about re-mapped blocks.
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Re-mapping occurs when a disk detects a new bad sector.

The disk cache is divided into a number of cache segments. Each cache

segment can either be allocated to a single sequential access stream or can be

further split into blocks for independent allocation. In our study, the cache pa-

rameters of interest are segment size, number of cache segments, cache replace-

ment policies, modeling prefetching algorithms, and write buffer organization.

The disk uses prefetching algorithms to improve the performance of sequen-

tial reads. The write buffer is used to delay the actual writing of data to the

disk media and to enable the disk to re-schedule write IOs (hence optimizing

throughput). The buffer is also used to optimize sequential write access.

3.3 Disk Profiling

In this section, we present methods for extracting certain disk features using

a combination of interrogative and empirical methods. Interrogative methods

use inquiry SCSI commands [43, 79] to get required information from the disk

firmware. Empirical methods measure completion times for various disk access

patterns, and profile the disk based on these measurements.

3.3.1 Low-level Disk Features

We now present the methods Diskbench [28] uses to extract low-level disk

features. In some of our extraction methods we assume the ability to force

access to the disk media for read or write requests (hence, avoiding the disk

caching and buffering). Most modern disks allow turning off the write buffer.

In the case of SCSI disks, this can be done by turning off the disk buffers, or

by setting the “force media access bit” in a SCSI command [79]. In the case of

IDE disks, this can often be done using their OS drivers.
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Rotational Time

Since current disk drives operate with a constant rotational speed,1 when-

ever the interrogative SCSI command for obtaining rotational period (Trot) is

supported by the disk, it will return the correct value. In the absence of the in-

terrogative command, we can also use the following empirical method (described

in Worthington et al. [101]) to obtain Trot. First, we ensure that read (or write)

commands access the disk media (by turning off the disk caching mechanisms).

Next, we perform n successive disk accesses to the same block, and measure the

access completion times. The absolute completion time for each disk access is

Ti = Tend reading + Ttransfer + TOS delayi . (3.1)

Tend reading is the absolute time immediately after the disk reads the block

from the disk media. Ttransfer is the transfer time needed to transfer data over

the IO bus. TOS delayi is the time between the moment when the OS receives

data over the IO bus, and the moment when the data is transfered to the user

level Diskbench process. Since the disk needs to wait for one full disk rotation

for each successive disk block access, the time between the two accesses can be

expressed as

Ti+1 − Ti = Trot + (TOS delayi+1
− TOS delayi); (3.2)

Tn+1 − T1 = n× Trot + (TOS delayn+1 − TOS delay1). (3.3)

The rotational period for current disks is much longer than the OS delay and

other IO overhead (not including the seek and rotational times). Thus, we can

measure the rotational period as

Trot measured = Trot +
∆TOS delayn+1,1

n
=
Tn+1 − T1

n
. (3.4)

For large n, the error term (
∆TOS delayn+1,1

n
) is reduced in comparison to Trot.

1To support the low-power mode, disks may occasionaly spin at a slower rate or stop
spinning completely. However, when servicing disk requests, current disks operate with a
constant rotational speed.
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OS Delay Variations

In order to estimate variations in operating system delay for IO requests,

we use the following method. First, we turn off all disk caching and disk

buffering. Then, we read the same block in successive disk rotations (as in

the empirical method for extracting Trot). We measure completion times for

each read request. Assuming that the rotational period (Trot) is constant, vari-

ations in Ti − Ti−1 from Equation 3.2 enable us to estimate the distribution

of ∆TOS delayi,i−1
= TOS delayi − TOS delayi−1

. Thus, by measuring variations in

Ti+1−Ti from Equation 3.2, we can estimate variations in the operating system

delay.

Mapping from Logical to Physical Block Address

Most current SCSI disks implement SCSI commands for address translation

(Send/Receive Diagnostic Command [79]) which can be used to extract disk

mapping. However, in the case of older SCSI disks, or for disks where address

translation commands are not supported (for example, IDE disks), empirical

methods are necessary.

Interrogative Mapping

For interrogative mapping, we use an algorithm based on the approach de-

scribed in Worthington et al. [101]. Using the interrogative method, a single

address translation typically requires less than one millisecond. But, since the

number of logical blocks is large, it is inefficient to map each logical block. For-

tunately, modern disks are optimized for sequential access of logical blocks.2

Due to this, logical blocks on a track are generally placed sequentially. Thus,

we can extract highly accurate mapping information by translating just one ad-

2Additionally, most disks use the skipping method to skip bad sectors during low-level disk
format, instead of re-mapping them.
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dress per track, except when anomalies are detected (tracks with bad or spare

blocks).

Since the number of re-mapped blocks is small compared to the total number

of blocks, we propose the following two data structures to store the obtained

mapping information. In the first data structure, we store the mapping that ex-

isted immediately after the low-level disk format. Since there are no re-mapped

blocks, we simply store the starting logical block number and the track size (in

blocks) for each track. The second data structure is used to store information

about the re-mapped blocks. Thus we only need to update the second data

structure periodically, using the inquiry SCSI command which returns the list

of current bad-block locations.

Figure 3.1 presents a simplified algorithm for the interrogative extraction

employed in Diskbench. Using the SCSI command for physical-to-logical ad-

dress translation, we extract the LBA for the first sector (sector zero) of each

track. If sector zero is marked as bad, we continue performing address transla-

tion for subsequent sectors until we obtain a valid logical block number. When

we come across a cylinder in which the number of sectors that lack a valid LBA

(bad or spare blocks) is above a fixed threshold (Kthreshold), we mark that cylin-

der as logically bad.3 We do not use these cylinders in our seek curve extraction

method. Tracks which have a substantial number of blocks without a valid LBA

are usually the ones containing mostly spare sectors.

3These cylinders are not necessarily bad, since they usualy just contain a large number of
spare blocks. However, our disk profiler does not use them for the sake of simplicity.
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Procedure: Interrogative Mapping

• Variables:

1. cyl num : Total number of cylinders

2. track per cyl : Number of tracks per cylinder

3. i : Cylinder number

4. j : Track number

5. cyl info[i] : data structure for cylinder i info

6. cyl info[i].logstart[j] : Starting LBA for track j on cylinder i

7. cyl info[i].logsize[j] : Track j size in blocks

• Execution:

1. for i = 0 to cyl num do

2. for j = 0 to track per cyl do

3. for k = 0 to Kthreshold do

4. cyl info[i].logstart[j] = phys to log(i,j,k)

5. if valid(cyl info[i].logstart[j]) then break

6. if not valid(cyl info[i].logstart[j]) then

7. mark track as bad.

8. sort by cyl info[i].logstart[j]

9. calculate cyl info[i].logsize[j]

Figure 3.1: Interrogative method for disk mapping.
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Empirical Mapping

For disks that do not support address translation, the profiler needs to per-

form empirical experiments in order to extract the mapping. We employ an

empirical method that is similar to the approach presented in Patterson et

al. [91]. We additionally use the first derivative of access times for easier auto-

matic mapping and various heuristics to prune the mapping errors near track

boundaries.

In the first step, we measure the time delay in reading a pair of blocks from

the disk. We repeat this measurement for a number of block pairs, always

keeping the position fixed for the first block in the pair. In successive exper-

iments, we linearly increase the position of the second block in a pair. Using

this method, our tool extracts accurate positions of track and cylinder bound-

aries. Time T (i) defined in Equation 3.5 is the completion time measured at the

moment when the user process receives data for logical block address i. (The

variables on the right side of Equation 3.5 are defined in Section 3.3.1.)

T (i) = Tend reading + Ttransfer + TOS delay. (3.5)

The access time (Ta(x, 0) = Tend reading(x)−Tend reading(0)) is the time needed

to access block x after accessing block 0. It includes both seek time and rota-

tional delay, but does not include transfer time and OS delay. Equation 3.7

presents the first derivative of ∆T (x, 0) defined in Equation 3.6.

∆T (x, 0) = T (x)− T (0);

∆T (x− 1, 0) = Ta(x− 1, 0) + (TOS delayx−1 − TOS delay0);

∆T (x, 0) = Ta(x, 0) + (TOS delayx − TOS delay0′ ). (3.6)

∆ = ∆T (x, 0)−∆T (x− 1, 0);

∆ = Ta(x, 0)− Ta(x− 1, 0) + (∆TOS delayx,0′ −∆TOS delayx−1,0). (3.7)
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Whenever the variations in the OS delay are small, ∆ is small and pro-

portional to Trot/tracksize for the case when both block x − 1 and block x are

on the same track. Whenever the disk can perform the access to block x − 1

without the additional rotational delay after the seek, and the access to block

x with the delay of a full Trot, ∆ is proportional to Trot/tracksize ± Trot. (The

sign of ∆ depends on TOS delay since it might happen that we occasionally need

less time to access block x.) Whenever blocks x and x − 1 reside on different

tracks, or cylinders, ∆ is proportional to the track or cylinder skew time (Tskew).

Since the cylinder skew is usually larger than the track skew, we can use the

positions of block x (when Diskbench experience skew times) to find out accu-

rate track and cylinder boundaries. We define the normalized first derivative in

Equation 3.8. This way we eliminate the ±Trot factor from Equation 3.7, which

helps Diskbench to automatically extract accurate disk mapping.

norm(∆) = (∆T (x, 0′)−∆T (x− 1, 0)) mod Trot. (3.8)

The norm(∆) is useful for automatic extraction only if the OS delay is

small compared to the skew times. Since the OS delay is a random variable, we

perform several measurements whenever |∆| is greater than a specific threshold

(for example, 0.02×Trot) and stop the measurement when the difference between

two consecutive ∆’s is less than a specific threshold (for example, 5%).

Seek Curves

Seek time is the time that the disk head requires to move from the current to

the destination cylinder. We implement two methods for seek curve extraction.

The first method uses the SCSI seek command to move (seek) to a destination

cylinder. The second one measures the minimum time delay between reading a

single block on the source cylinder and reading a single block on the destination

cylinder to obtain the seek time. In order to find the minimum time, we can
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measure the time between reading a fixed block on the source cylinder, and

reading all blocks on one track in the destination cylinder. The seek time is

the minimum of the measured times. Since LBAs increase linearly on a track,

we use an efficient binary-search method in order to find the minimum access

time (hence, the seek time). Tseek(x, y) returns seek time (in µs) between logical

blocks x and y. This function is symmetrical, i.e., Tseek(x, y) = Tseek(y, x). The

seek time obtained using this method also includes the settling time for the disk

head.

Disk Buffer/Cache Parameters

Most disk drives are equipped with a read cache. The read cache improves

the disk performance by allowing for data prefetching (for sequential access)

and by allowing frequently used disk blocks to reside in the buffer (eliminating

disk seeks).4 We now present methods to extract the cache segment size, the

number of segments, and the cache segment replacement policy.

Read Cache Segment Size

The method for extracting the cache segment size consists of three steps.

First we read a few sequential disk blocks from a specific disk location. Next we

wait for a long enough period of time (several disk rotations) to allow the disk to

fill up the cache segment with prefetched data. Finally we read consecutive disk

blocks occurring immediately after the first read and measure the completion

time. If the block is in the cache, the completion time includes only a block

transfer time (from the cache to the OS through the IO bus) and a random

TOS delay. If the block is not in the cache, the completion time also includes

seek time and rotational delay, as well as data transfer time. The seek time

4Since the disk read cache is small compared to the OS cache, disks usually optimize their
cache algorithms to support efficient access to multiple sequential streams via prefetching
methods.
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and rotational delay are the dominant factors in this IO completion time. We

can thus detect the size of a cache segment by detecting when completion times

include long mechanical seek operations.

Number of Cache Segments

In order to extract the number of disk cache segments, we need to be able to

clear the cache. We “clear” the cache by performing a large number of random

sequential reads for different logical blocks, which effectively clears the cache

by polluting it. In this extraction method we linearly increase the number of

sequential streams accessing the disk. In each iteration for each stream we

read a few blocks (from locations which are not used during the cache pollution

phase). We then wait a sufficient amount of time so that the disk can fill the

cache segment with the prefetched data. After this step, the disk cache allocates

one cache segment for each stream.

We perform read requests for all streams and measure IO completion times.

If the completion times are smaller than a specific threshold, we assume that all

blocks were in the cache, and that the number of cache segments is greater than

or equal to the number of streams in this iteration. When we detect that one

read request requires an amount of time exceeding the threshold, we deduce that

the number of cache segments is equal to the number of streams in the previous

iteration. We repeat the entire experiment to confirm that the excessive time

is not caused by a large random OS delay.

By changing the access pattern in the previous experiment and taking into

the account which streams are not serviced from the cache, Diskbench can

deduce the policy used for the cache segment replacement.
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Write Buffer Parameters

Most disk drives are equipped with a write buffer to improve the disk write

performance. Whenever the disk has sufficient space in the write buffer, the

write command is completed as soon as data is transferred to the disk’s write

buffer.5 The disk writes this data to the disk magnetic surface at some later

time, aiming to improve the disk write performance.

Figure 3.2 depicts an empirical method for extracting the write buffer size.

Between iterations, we allow the disk to purge the contents of the write buffer to

the disk media. Before issuing the write IO, we also seek to a cylinder far away

from the write request’s destination. When the write request size is smaller

than the write buffer, we expect that the write completion times will increase

linearly, proportional to the throughput of the IO bus. When the write request

size is greater than the write buffer, the completion time will incur seek and

rotational delays. Diskbench can detect this using simple heuristics. Using this

method we can also measure the throughput of the IO bus.

3.3.2 High-level Disk Features

Most real-time schedulers rely on simple disk models to reduce the problem

complexity. In this section, we present several high-level disk features that are

used for data-placement algorithms [68], rotationally-aware schedulers [42, 45,

53], preemptible schedulers [20, 22, 23, 24], and admission control methods [21].

Disk Zones

Using extracted disk mapping, Diskbench implements methods to extract

zoning information, including 1) precise zone boundaries, 2) track and cylinder

5However, most disks allow applications to turn off the write buffer in order to maintain
data consistency.
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Procedure: Write Buffer Size

• Variables:

1. max size : Maximal estimated write buffer size

2. start : Starting LBA for write request

3. long seek : LBA for a block with large Tseek(start, long seek)

4. i : Write request size iteration

5. T1, T2, Tprev: Time registers

• Execution:

1. Tprev = 0

2. for i = 1 to max size do

3. disk seek(long seek)

4. wait(20× Trot)
5. T1 = get time()

6. disk write(start, i)

7. T2 = get time()

8. if T2 − T1 − Tprev > Trot
10

then

9. return i− 1

10. Tprev = T2 − T1

Figure 3.2: Empirical method for extracting write buffer size.
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skew factors for each zone, 3) track size in logical blocks, and 4) sequential data-

throughput of each zone. The algorithm used to extract zoning information

scans the cylinders from the logical beginning to the logical end based on the

disk mapping table.

Due to the presence of bad and spare sectors, some tracks in a zone may

have a smaller number of blocks than the others. Since we store only the track

size (in logical blocks) for each track, we might detect a new zone incorrectly. In

order to minimize the number of false positives, we use the following heuristics.

First, we ignore cylinders with a large number of spare sectors. Second, during

the cylinder scan, we detect a new zone only if the maximum track size in the

current cylinder differs from the track size of the current zone by more than

two blocks. Third, we detect a new zone only when the size of the new zone (in

cylinders) is above a specific threshold.

Rotational Delay

In order to optimize disk scheduling, the OS may require accurate seek time

and rotational delay characteristics of a disk [45, 53, 57, 102]. We can predict

the rotational distance between two LBAs using the following disk features:

• disk mapping extracted in Section 3.3.1, and

• skew factors for the beginning of each track, relative to a chosen rotational

reference point.

We choose the disk block with LBA zero as the reference point. Let ci be the

track’s cylinder number, tj the track’s position in a cylinder, and tracksize(ci, tj)

the track’s size in logical blocks. Let LBAstart(ci, tj) be the track’s starting

logical block number, and T(LBA) the time after access to a specific LBA is

completed. The skew factor of a track is defined as

sci,tj = [T (LBAstart(ci, tj))− T (LBA0)] mod Trot. (3.9)
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If the number of spare and bad sectors is small, we can accurately predict the

rotational distance between two LBAs (x and y) using the following equations:

X = Trot × [x− LBAstart(cx, tx)] mod tracksize(x)

tracksize(x)
+ scx,tx ; (3.10)

Y = Trot × [y − LBAstart(cy, ty)] mod tracksize(y)

tracksize(y)
+ scy ,ty ; (3.11)

Trot del(y, x) = (Y −X) mod Trot. (3.12)

Using the seek time Tseek(y, x) defined in Section 3.3.1 and the rotational

delay prediction from Equation 3.12, we can predict the access time to a disk

block y after access to a block x, Ta(y, x) as

Ta(y, x) = Trot del(y, x) + Trot ×
⌈Tseek(y, x)− Trot del(y, x)

Trot

⌉
. (3.13)

Sequential Throughput and Chunking

The maximum IO size in current schedulers for commodity operating sys-

tems is bounded to reasonable small values (approximately between 128 and

256 kB). For large sequentially-placed data, the sequential access is divided into

multiple “chunks” [18, 22]. In this section, we present a method to extract

optimal chunk size for sequential disk access. Figure 3.3 illustrates the effect

of chunk size on disk throughput using a mock disk. The optimal chunk size

lies between a and b. For chunk sizes smaller than a, due to the overhead

associated with issuing a disk command, the IO bus is a bottleneck. Point b

in Figure 3.3 denotes the point beyond which the performance of the cache

may be sub-optimal. Points a and b in Figure 3.3 can both be extracted using

Diskbench.

Disk Admission Control

In this section, we present a framework for disk admission-control methods

based on disk profile for cycle-based real-time disk schedulers [9]. The cycle-
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based disk scheduler employed in Xtream [21] uses the following analytical model

to decide if the new stream can be admitted to the system.

Given N streams to support, in each IO cycle the disk must perform N IO

operations, each consisting of a latency component and a data transfer compo-

nent. Let Tdisk denote the disk cycle time. Let Ldiski denote the disk latency

to start IO transfer for stream i. Let rRT denote the ratio of time reserved for

real-time streams and the disk cycle time. Then Tdisk can be written as

rRT × Tdisk ≥
N∑
i=1

Ldiski +
N∑
i=1

Tdisk ×Bi

Rdiski

.

The above equation can be simplified as

Tdisk ≥ N × L̄disk ×Rdisk

rRT ×Rdisk −N × B̄
(3.14)

where rRT ×Rdisk > N×B̄. When the application asks for a specific guaranteed

rate, the scheduler checks that Inequality 3.14 is satisfied. If it is not, the

application is notified that it cannot get required disk bandwidth.

The admission controller must ensure that the Xtream server will not be

overloaded if a new stream is admitted. At the same time, it should not deny ser-
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vice to a new request that will not overload the server. The two main objectives

of the admission controller are maintaining QoS and avoiding under-utilization

of the server.

Figure 3.4 depicts the available slack in each time cycle for two scenarios.

Figures 3.4(a) and 3.4(b) illustrate the variations of available slack when the

Xtream server is slightly overloaded (i.e., cannot maintain real-time guarantees)

and under-utilized (i.e., can admit more streams) respectively. Only when the

available slack is always greater than zero will the system be able to fulfill all

deadlines and support all streams in real-time.
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Figure 3.4: Available slack in each time cycle.

In order to achieve the two design objectives, Xtream must be able to pre-

dict the disk-throughput utilization accurately. This is a challenging problem

because disk performance varies significantly depending on the disk access pat-

tern and file-system data-placement policies. However, to remain independent

of the underlying file-system, Xtream does not make any assumptions about

file-system data layout on the disk, nor does it attempt to control the file place-
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ment. The only assumption made is that a single IO is sequential which is

reasonable for multimedia files with a large ratio of file size to IO size. This

feature of Xtream allows it to work with almost any file-system.

To perform good admission control under these restictions, Xtream relies

on accurate modeling of disk-drive performance based on disk profiling. Equa-

tion 3.15 offers a simple model for disk utilization (U) which depends on the

number of IO requests in one cycle (N). The transfer time (Ttransfer) is the total

time that the disk spends in data transfer from disk media in a time cycle. The

access time (Taccess) is the average access penalty for each IO request, which

includes both the disk seek time and rotational delay.

U =
Ttransfer

N × Taccess + Ttransfer
(3.15)

Since the disk utilization U depends only on the number of requests and the

total amount of data transfered in a time cycle, it can be expressed as a function

of just one parameter: the average IO request size (Savg).
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Figure 3.5: Disk throughput vs. average IO size.

We use our disk profiler tool to measure the disk-throughput utilization.

The profiler performs sequential reads of the same size from random positions
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on the disk. Figure 3.5 shows the achieved disk throughput depending on the

average IO request size. We propose and evaluate two classes of approaches

for admission control: 1) conservative and 2) aggressive. The conservative class

provides the best QoS level for all streams, while the aggressive class provides

support for tunable QoS levels.

Let the bit-rate of each stream i in the system be denoted by BRi. When

a new request arrives (with required bit-rate BRnew), the admission controller

first calculates the new average IO request size using Equation 3.16.

Savg =
T× (BRnew +

∑N
i=1 BRi)

N + 1
(3.16)

In the next step, we obtain the predicted disk utilization, P (Savg), for an

average request size of Savg from the disk utilization curve (Figure 3.5). Then,

if the condition in Equation 3.17 holds, the new request is accepted.

P (Savg) > BRnew +
N∑
i=1

BRi (3.17)

3.4 Experimental Evaluation

In this section we present selected results from our disk profiling studies. We

first present experimental results for profiling low-level disk features. We then

present results for three high-level disk features: 1) rotational delay factors, 2)

optimal chunk sizes for sequential access, and 3) disk admission-control curves.

3.4.1 Methodology

Diskbench consists of two separate tools: Scsibench and Idextract. Scsibench

runs as a user-level process on Linux systems. It uses our custom user-level SCSI

library to access the disk over the Linux SCSI generic interface [38, 79]. Using

the command line interface, a user can specify features to extract, or traces to
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Disk Trot(in µs) RPM Interrog.
1. ST39102LW 5972.56 10045.94 10045
2. ST318437LW 8305.83 7223.84 7200

Table 3.1: Rotational time for two testbed disks.

execute. Idextract runs as a user-level process using Linux raw disk support for

accessing any disk. All extraction methods in Idextract rely only on read and

write disk commands.

We now present experimental results for each disk feature described in Sec-

tion 3.3 on three testbeds. The first testbed is a dual Intel Pentium II 800MHz

machine with 1GB of main memory and a 9GB Seagate ST39102LW 10000 RPM

SCSI disk (12 disk heads). The second testbed is an Intel Pentium III 800MHz

machine with 128MB of main memory and an 18GB Seagate ST318437LW 7200

RPM SCSI disk (2 disk heads). The third testbed is Intel Pentium 4 1500MHz

with 512MB of main memory and an 40GB WD400BB-75AUA1 7200 RPM IDE

disk.

The first configuration is a typical server system with a fast SCSI disk and

a large number of tracks per cylinder. The second configuration is a typical

workstation, with a large but slower hard disk (slower rotation speed). The

third configuration is a slightly newer PC workstation with an IDE disk. We

present results for the IDE disk only for methods which differ from SCSI disk

methods.

3.4.2 Rotational Time

Using Equation 3.4 to calculate the time required for a single rotation of the

disk, we obtained rotational times for the two testbed configurations. These are

presented in Table 3.1.
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3.4.3 Variations in OS Delay

Based on Equation 3.2, the variation in operating system delay for disk

access is proportional to the variation in completion times for the same request.

Using the trace execution described in Figure 3.6, we measured variations in

request completion times (and thus, the distribution of operating system delay

variations) for the two testbed configurations. These are presented in Figures 3.7

and 3.8.

B 0 ; Turn off all disk buffering
R 0 1 ; Read one sector starting from LBN 0
T 2 ; Store current time to register T2

; repeat the following:
R 0 1 ; Read one sector starting from LBN 0
T 3 ; Store current time to register T3

- 0 3 2 ; Print T3 − T2

- 2 3 0 ; T2 = T3 − 0
· · ·

Figure 3.6: Sample trace file to find TOS delay variations.

Figure 3.7 shows the results for our first testbed configuration. We can see

that the variations in OS delay are of the order of 10µs. Figure 3.8 shows

results for our second testbed configuration. Here the OS delay variations are

of the order of 40µs, with greater variations in OS delay as compared to the

first testbed.

3.4.4 Mapping from Logical to Physical Block Address

We performed experiments to test both interrogative and empirical methods

for the extraction of disk mappings.
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Interrogative Mapping

In Figure 3.9, we present sample results from the mapping extraction for

our testbed 2 configuration.6 In each line we print the mapping information

for one cylinder. After C (representing the beginning of a new cylinder) we

print the cylinder number, the starting LBA, and the cylinder size (in logical

blocks). Then we print information for individual tracks after T , namely the

track number, its starting LBA, and its size (in logical blocks). We print this

information for all tracks.

Diskbench stores the starting LBA and the size of each disk track. If the

number of bad sectors in a track is greater than the number of spare sectors

allocated per track, then the track size is smaller than the size of a regular track

in a particular disk zone (for example, cylinders 718− 721 in Figure 3.9).

Empirical Mapping

We now present results for the empirical extraction of mapping information

for testbed 1 in Figures 3.10-3.13. This particular disk had 12 tracks per cylin-

der. In Figure 3.11 we present the access time ∆T (x, 0) (defined in Equation 3.6)

between disk blocks 0 and x. The rotational period of the disk (Trot) is approx-

imately 6ms. We detail our results in Figure 3.10, which is an enlargement of

a small section of Figure 3.11.

We can see that for small values of x, the access time ∆T (x, 0) is larger

than Trot. When TOS delay (defined in Section 3.3.1) is larger than the rotational

distance between blocks 0 and x, the second read request (the access to logical

block x) has to be serviced during the next disk rotation. When ∆T (x, 0)

is greater than TOS delay, an additional disk rotation is not needed. ∆T (x, 0)

increases linearly for all blocks on the same track. When blocks x− 1 and x are

located on different tracks, ∆T (x, 0) increases by the track (or cylinder) skew

6The results for testbed 1 do not provide any additional insights.
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1. C 0 0 1500 T 0 0 750 1 750 750

2. C 1 1500 1500 T 0 2250 750 1 1500 750

3. C 2 3000 1500 T 0 3000 750 1 3750 750

4. C 3 4500 1500 T 0 5250 750 1 4500 750

5. C 4 6000 1500 T 0 6000 750 1 6750 750

6. C 5 7500 1500 T 0 8250 750 1 7500 750

7. C 6 9000 1500 T 0 9000 750 1 9750 750

8. ...

9. C 718 1077000 1499 T 0 1077000 750 1 1077750 749

10. C 719 1078499 1499 T 0 1079248 749 1 1078499 750

11. C 720 1079998 1499 T 0 1079998 750 1 1080748 749

12. C 721 1081497 1499 T 0 1082246 749 1 1081497 750

13. ...

Figure 3.9: Sample LBA-to-PBA mapping for Seagate ST318437LW.

time (after which ∆T (x, 0) continues to increase linearly). In our example this

happens at logical block number 254.

When the access time to the block x − 1 requires a rotational delay of

nearly Trot, and the access to x does not require any rotational delay after

seek, ∆T (x, 0) decreases by Trot. This happens at block number 262 for the

first time. At the next track boundary (508), a skew time increase and a Trot

decrease overlap. Figure 3.11 shows the ∆T (x, 0) curve for the distances up to

5000 logical blocks.
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Figure 3.12 shows the first derivative of the ∆T (x, 0) curve (∆) defined in

Equation 3.7. We can see that, since TOS delay is a random variable, ∆T (x, 0)

can also incur a sudden increase of Trot in successive measurements. In this

experiment, it occurs at x = 2758. This happens when the difference between

TOS delay in successive measurements is substantial, so that ∆T (x, 0) incurs one

disk rotation more than ∆T (x − 1, 0). A positive Trot increase in ∆T (x, 0) is

always followed by a negative Trot decrease in the next few accesses.

In order to perform the empirical mapping automatically, we use several

heuristics to find the normalized value for ∆ (norm(∆)) defined in Equation 3.8.

Figure 3.13 presents norm(∆) for our testbed 1, where we capture only the track

and cylinder skew times. The positions of the track and cylinder skew times on

the x-axis are exact positions of the track and cylinder boundaries (occurring

every 254 blocks in Figure 3.13). The track and cylinder skew times for this

disk are approximately 880µs and 1100µs respectively. The skew times to switch

from an odd to an even track, and from an even to an odd track, are also slightly

different (880µs and 800µs respectively).

Figure 3.14 presents the empirical mapping results for testbed 2. The disk

used in this configuration has two tracks per cylinder. Results from Section 3.4.3

show that variations in operation system delay, and hence the noise in the

measured norm(∆), are much higher than for the first testbed configuration.

However, since TOS delay is a random variable, we can repeat the experiment to

limit the noise level and extract norm(∆) accurately.

Figure 3.15 presents the empirical mapping results for testbed 3. We can

see that Idextract results are similar to Scsibench ones. For this particular disk

we are not able to find out the number of tracks per cylinder since the track

skew is nearly identical to the cylinder skew time.
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Zone Cylinders tsize TR TRmax γ(1) H

1 0-847 254 18.85 21.77 1108 884
2 848-1644 245 18.02 21.01 1108 885
3 1645- 2393 238 17.51 20.40 1098 876
4 2394- 3097 227 16.70 19.45 1114 891
5 3098- 3758 217 15.99 18.60 1115 890
6 3759- 4380 209 15.43 17.91 1105 885
7 4381- 4965 201 14.84 17.23 1100 876
8 4966- 5515 189 13.98 16.20 1123 901
9 5516- 6031 181 13.39 15.52 1125 903

10 6032- 6517 174 12.89 14.92 1107 885
11 6518- 6961 167 12.38 14.31 1118 899

Table 3.2: Disk zone features for ST39102LW.

Zone Cylinders tsize TR TRmax γ(1) H

1 0- 4553 750 31.07 46.24 977 652
2 4554- 6582 687 28.94 42.35 985 654
3 6583- 8247 678 28.48 41.80 987 648
4 8248-11554 666 27.92 41.06 1134 651
5 11555-14597 625 27.13 38.53 981 646
6 14598-17370 600 26.00 36.62 983 652
7 17371-19908 583 25.44 35.94 987 657
8 19909-22226 550 24.49 33.91 982 648
9 22227-26338 500 22.74 30.82 982 650

10 26339-28170 458 21.04 28.23 1159 654
11 28171-29850 437 20.24 26.94 990 663

Table 3.3: Disk zone features for ST318437LW.
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3.4.5 Seek Curves

In Figure 3.16 we present the seek curve for our first testbed (ST39102LW).

We can see that the difference between the rotational period and the maximum

seek time is less than a factor of two. Since the variations in the seek curve

are negligible, we can also deduce that the seek time depends mainly on the

seek distance in cylinders, and not on starting or destination cylinder positions.

Figure 3.17 presents the seek curve for the second testbed.
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Figure 3.16: Complete seek curve for ST39102LW.

3.4.6 Read Cache

Figures 3.18 and 3.19 depict results for the extraction of the cache segment

size, using the method explained in Section 3.3.1. Both disks stopped prefetch-

ing when they filled up the first cache segment. The extracted size for testbeds

1 and 2 was 561 and 204 blocks, respectively. Both disks continued prefetching

into the next available cache segment whenever a long sequential access was

detected.
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Figure 3.17: Complete seek curve for ST318437LW.
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Figure 3.18: Read request completion times for ST39102LW.

60



0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

T
im

e 
in

 m
ic

ro
se

co
nd

s

LBA

Seagate ST318437LW prefetching

Figure 3.19: Read request completion times for ST318437LW.

Using the extracted cache segment size, we can find out the number of

cache segments in the disk read cache, as explained in Section 3.3.1. Using this

method, we have detected three cache segments for testbed 1, and 16 segments

for testbed 2.

3.4.7 Write Buffer

Figures 3.20 and 3.21 present the results for write buffer size extraction using

the method introduced in Section 3.3.1.

The write buffer size for testbed 1 and testbed 2 was measured to be 561

and 204 blocks respectively. When comparing these to the cache segment-size

extractions presented in Section 3.4.6, we can see that both disks use exactly

one cache segment as a write buffer (for each write sequential stream of data).

Using these measurements we can also measure the write throughput, both

to the disk write buffer (slope of the curve for write request sizes that fit into

the write buffer), and to the disk platter (slope for request sizes greater than

the write buffer size). In the future we plan to extract the number of cache

61



0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000

T
im

e 
in

 m
ic

ro
se

co
nd

s

Write request size in blocks

54 MBps

Figure 3.20: Write request completion times for ST39102LW.
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Figure 3.21: Write request completion times for ST318437LW.

62



segments that can be used as write buffers. We believe that we can use a

method similar to the method we used for detecting the number of read cache

segments presented in Section 3.3.1.

3.4.8 Disk Zones

Tables 3.2 and 3.3 present the zoning information extracted for the Sea-

gate ST39102LW and Seagate ST318437LW disks respectively. tsize denotes the

track size in logical blocks. TR is the transfer rate measured for long sequential

reads that span multiple cylinders. TRmax is the calculated theoretical maxi-

mum transfer rate for read requests which incurs no seek, rotation or switching

overheads. H and γ(1) are the track and cylinder switch times in microseconds.
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Figure 3.22: Disk bandwidth depending on data location for two SCSI disks.

Figure 3.22 depicts the disk bandwidth for large sequential accesses depend-

ing on the starting LBA for testbed 1 and 2. For modern disks, the difference

between the maximum and minimum sequential disk bandwidth is usually a

factor of two. Figure 3.23 presents the disk zone bandwidths for testbed 3.
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Figure 3.23: Disk bandwidth depending on data location for an IDE disk.

3.4.9 Rotational Delay Prediction

Based on Equation 3.12, in order to predict the rotational delay accurately,

we need to extract the skew factor (defined in Equation 3.9) for each track.

Sample results for the extracted skew factors (in µs) are presented in Table 3.4,

wherein we also present the LBAs for blocks residing on the same disk radius

(LBArot0).

In Figure 3.24, we plot the skew times against track numbers. We notice

a distinct trend in skew times, a property which enables us to compress this

information effectively and to reduce its space requirement. In Figure 3.24,

we also notice a slight deviation from the normal trend for tracks 12, 24, and

36. This is due to cylinder skew, which occurs when the next track falls on

an adjacent cylinder instead of the same cylinder. The experimental disk had

exactly 12 surfaces. Hence, we expect a trend deviation on tracks that are

multiples of 12 to account for an increased switching overhead.

Based on Equation 3.12 and the compressed information about skew times

above, we were able to predict the rotational delay between two disk accesses. In
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Cyl Track Skew(µs) LBArot0
0 0 0 0
0 1 755.15 475
0 2 1595.02 694
0 3 2352.35 915
0 4 3191.09 1134
0 5 3949.03 1356
0 6 4788.61 1574
0 7 5546.36 1796
0 8 414.31 2268
0 9 1170.86 2490
0 10 2009.76 2708
0 11 2767.37 2930
1 0 3829.42 3139
· · · · · · · · · · · ·

Table 3.4: Rotational delay modeling for ST39102LW (the track size for the
first zone is 254 blocks). Disk blocks with LBArot0 are on the same disk radius.
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Figure 3.24: Skew factor s from Table 3.4 for ST39102LW.
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Figure 3.25: Rotational delay prediction accuracy for ST39102LW and ST318-
437LW.

Figure 3.25, we present the error distribution of rotational delay predictions for

a large number of random request-pairs. We note that for the SMP-like testbed

(testbed 1), which has a very predictable distribution of OS delay variations

(Figure 3.7), our prediction is accurate within 25 µs for 99% of the requests.

Even for the workstation-like testbed (testbed 2), which has less predictable

OS delay variations (Figure 3.8), our prediction is accurate within 80 µs for

99% of the requests. These errors are negligible compared to variations in seek

time, which are of the order of a millisecond. We thus conclude that with

detailed disk parameters, systems can implement very accurate mechanisms for

predicting rotational delays. We used seek time and rotational delay predictions

from Diskbench to predict disk access times in the implementation of Semi-

preemptible IO [20, 22], which is presented in Chapter 4.

3.4.10 Sequential Throughput and Chunking

As regards chunking, the disk profiler provides the optimal range for the

chunk size. Figure 3.26 depicts the effect of chunk size on the read throughput
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performance for one SCSI and one IDE disk drive. Figure 3.27 shows the same

for the write case. Clearly, the optimal range for chunk size (between points a

and b illustrated previously in Figure 3.3 in Section 3.3.2) can be automatically

extracted from these figures.

3.4.11 Disk Admission Control

In this section, we evaluate the Xtream system using the following metrics:

1) maximum system throughput, 2) initial latency, and 3) accuracy of admission

control methods. We used an Intel Pentium 4 1.5 GHz Linux based PC, with

512 MB of main memory and a WD400BB 40 GB hard drive. The maximum

sequential disk throughput was 31 MBps in the fastest zone and 21 MBps in

the slowest zone. The LAN was 100 Mbps ethernet, which enables streaming

several mpeg2 and a large number of mpeg4 encoded videos.

In order to evaluate the hard disk scheduler, a client can require “dummy”

streaming with constant (CBR) or variable bit-rate (VBR). Dummy streams

were not streamed over the network. The client specified whether the dummy

stream was read or write, and whether the bit-rate was constant or variable.

Throughput

Figure 3.28 depicts the percentage of missed cycle deadlines depending on

the total bit-rate of serviced streams. In each of the three experiments (de-

noted by the three lines), all serviced streams had the same bit-rate. Larger

bit-rates result in larger disk IOs, and consequently higher disk utilization (See

Figure 3.5). In each experiment, we used a time cycle of one second. Since

one of the main goals of the system is to maintain real-time guarantees, the

maximum throughput of the system equals the maximum value on the x-axis

when the system does not miss any deadlines. Depending on the required QoS,

the admission control module can choose an appropriate maximum through-
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Figure 3.26: Sequential read throughput vs. chunk size.
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Figure 3.27: Sequential write throughput vs. chunk size.
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Figure 3.28: Percentage of missed cycle deadlines.

put (total bit-rate) for the disk. Thus, the trade-off between QoS and system

throughput decides the admission control policy. Table 3.5 depicts the accuracy

for one conservative and two aggressive Xtream admission control policies.

Initial Latency

For this experiment, we defined initial latency as the delay between the

moment the request handler received a client request, and the moment when

the initial buffer for the new stream was filled. Data on the measured initial

latency, depending on the number of streams in the system, is presented in

Figure 3.29. The initial latency did not depend on the load of the system

but only on the size of IO requests (which depends on stream bit-rates). The

experiment did not consider or evaluate network or client-side latency.

Guaranteed IO

For a streaming multimedia system to guarantee QoS for IO, its admission

control policy must be accurate. We evaluated the three different admission
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Figure 3.29: Initial latency.

control configurations: conservative admission control (Adm1) and two aggres-

sive admission controls (Adm2 and Adm3). Adm1 uses the min curve from

Figure 3.5 to perform admission control. Adm2 uses the mean curve from

Figure 3.5 and maximum stream bit-rates. Adm3 uses the mean curve from

Figure 3.5 and average stream bit-rates.

Avg. BR Type MaxN Adm1 Adm2 Adm3
250 kBps C 44 39 43 n/a

1000 kBps C 20 14 15 n/a
2000 kBps C 12 9 10 n/a
250 kBps V 44 30 34 43

1000 kBps V 23 11 12 15
2000 kBps V 11 7 8 10
250 kBps H 44 39 43 n/a

1000 kBps H 16 14 15 n/a
2000 kBps H 10 9 10 n/a

Table 3.5: Admission control accuracy.

To determine the accuracy of the three admission control configurations,
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we performed experiments for the following two scenarios: homogeneous CBR

(type C) and V BR (type V ) streams where all serviced streams have the same

bit-rate; and heterogenous CBR streams (type H) where each stream has a

constant bit-rate, but the bit-rate for individual streams in the system varies be-

tween 1/10 and 10 times the average value. MaxN denotes the maximum num-

ber of streams that the system can support without missing deadlines. MaxN

was calculated manually within each experiment using trial and error. The

results presented in Table 3.5 show that Xtream provided guaranteed disk IO

performance, while not significantly under-utilizing the system.

3.4.12 Summary of Results

We evaluated Diskbench using two testbeds, a typical server configuration

(an SMP multiprocessor machine with a fast 10K RPM SCSI disk) and a typ-

ical workstation configuration (a single CPU machine with a large 7200 RPM

SCSI disk). For profiling high-level disk features, we performed additional ex-

periments using several IDE disks.

First, we presented experimental results for profiling the following low-level

disk features: 1) rotational time, 2) OS delay variations, 3) disk mappings, 4)

seek curves, 5) read cache, 6) write cache, and disk zoning.

Second, we presented experimental results for the folowing high-level disk

features: 1) rotational delay factors, 2) optimal chunk size for sequential access,

and 3) disk admission-control curves.

3.5 Summary

In this chapter, we have presented Diskbench, a user-level tool for disk fea-

ture extraction. Diskbench uses both interrogative and empirical methods to

extract disk features. The empirical methods extract accurate low-level disk
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features like track and cylinder boundaries, track and cylinder skew times, the

number of tracks per cylinder, track size (in logical blocks), as well as read and

write buffer parameters. Diskbench also extracts high-level disk features nec-

essary for advanced scheduling methods like our Semi-preemptible IO [22] or

rotationally-aware schedulers [42, 45, 53, 102, 52, 93].

We believe that this work can be used by system and application program-

mers to improve and guarantee real-time disk performance. Using knowledge

about disk features provided by Diskbench, system or application programmers

can fine-tune disk accesses to match application requirement and can predict

disk performance, which is necessary for real-time disk scheduling.
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Chapter 4

Preemptibility of Disk Access

In this chapter, we investigate the preemptibility of disk access and present

the design and implementation of Semi-preemptible IO [20, 22].

4.1 Introduction

Traditionally, disk IOs have been thought of as non-preemptible operations.

Once initiated, they cannot be stopped until completed. Over the years, op-

erating system designers have learned to live with this restriction. However,

non-preemptible IOs can be a stumbling block for applications that require a

short response time. We propose methods to make disk IOs semi-preemptible,

thus providing the operating system a finer level of control over the disk-drive.

Preemptible disk access is desirable in certain settings. One such domain

is that of real-time disk scheduling. Real-time scheduling theoreticians have

developed schedulability tests (tests of whether a task set is schedulable such

that all deadlines are met) in various settings [46, 48, 51]. In real-time scheduling

theory, blocking1, or priority inversion, is defined as the time spent when a

higher-priority task is prevented from running due to the non-preemptibility

1We refer to blocking as the waiting time.
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of a low-priority task. Blocking degrades schedulability of real-time tasks and

is thus undesirable. Making disk IOs preemptible would reduce blocking and

improve the schedulability of real-time disk IOs.

Another domain where preemptible disk access is essential is that of inter-

active multimedia such as video, audio, and interactive virtual reality. Because

of the large amount of memory required by these media data, they are stored

on disks and are retrieved into main memory only when needed. For inter-

active multimedia applications that require a short response time, a disk IO

request must be serviced promptly. For example, in an immersive virtual world,

the latency tolerance between a head movement and the rendering of the next

scene (which may involve a disk IO to retrieve relevant media data) is around

15 milliseconds [4]. Such interactive IOs can be modeled as higher-priority IO

requests. However, due to the typically large IO size and the non-preemptible

nature of ongoing disk commands, even such higher-priority IO requests can be

kept waiting for tens, if not hundreds, of milliseconds before being serviced by

the disk.

To reduce the response time for a higher-priority request, its waiting time

must be reduced. The waiting time for an IO request is the amount of time

it must wait, due to the non-preemptibility of the ongoing IO request, before

being serviced by the disk. The response time for the higher-priority request

is then the sum of its waiting time and service time. The service time is the

sum of the seek time, rotational delay, and data transfer time for an IO request.

(Service time can be reduced by intelligent data placement [104] and scheduling

policies [102]. However, our focus is on reducing the waiting time by increasing

the preemptibility of disk access.)

In this study, we explore Semi-preemptible IO (previously called Virtual

IO [20]), an abstraction for the disk IO, which provides highly preemptible disk

access (average preemptibility of the order of one millisecond) with little loss in

disk throughput. Semi-preemptible IO breaks the components of an IO job into
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fine-grained physical disk-commands and enables IO preemption between them.

It thus separates the preemptibility from the size and duration of the operating

system’s IO requests.

Semi-preemptible IO maps each IO request into multiple fast-executing disk

commands using three methods. Each method addresses the reduction of one of

the possible components of the waiting time — the ongoing IO’s transfer time

(Ttransfer), rotational delay (Trot), and seek time (Tseek).

• Chunking Ttransfer. A large IO transfer is divided into a number of small

chunk transfers, and preemption is made possible between the small trans-

fers. If the IO is not preempted between the chunk transfers, chunking

does not incur any overhead. This is due to the prefetching mechanism in

current disk drives (Section 4.2.1).

• Preempting Trot. By performing just-in-time (JIT) seek for servicing

an IO request, the rotational delay at the destination track is virtually

eliminated. The pre-seek slack time thus obtained is preemptible. This

slack can also be used to perform prefetching for the ongoing IO request,

and/or to perform seek splitting (Section 4.2.2).

• Splitting Tseek. Semi-preemptible IO can split a long seek into sub-seeks,

permitting a preemption between two sub-seeks (Section 4.2.3).

The following example illustrates how Semi-preemptible IO can reduce the

waiting time for higher-priority IOs (and hence improve the preemptibility of

disk access).
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4.1.1 Illustrative Example

Suppose a 500 kB read-request has to seek 20, 000 cylinders requiring Tseek

of 14 ms, must wait for a Trot of 7 ms, and requires Ttransfer of 25 ms at a

transfer rate of 20 MBps. The expected waiting time, E(Twaiting), for a higher-

priority request arriving during the execution of this request, is 23 ms, while

the maximum waiting time is 46 ms (please refer to Section 4.2 for equations).

Semi-preemptible IO can reduce the waiting time by performing the following

operations.

It first predicts both the seek time and rotational delay. Since the predicted

seek time is long (Tseek = 14 ms), it decides to split the seek operation into

two sub-seeks, each of 10, 000 cylinders, requiring T ′seek = 9 ms each. This seek

splitting does not cause extra overhead in this case because the Trot = 7 can

mask the 4 ms increased total seek time (2 × T ′seek − Tseek = 2 × 9 − 14 = 4).

The rotational delay is now T ′rot = Trot − (2× T ′seek − Tseek) = 3 ms.

With this knowledge, the disk driver waits for 3 ms before performing a JIT-

seek. This JIT-seek method makes T ′rot preemptible, since no disk operation is

being performed. The disk then performs the two sub-seek disk commands,

and then 25 successive read commands, each 20 kB in size, requiring 1 ms

each. A higher-priority IO request could be serviced immediately after each

disk-command. Semi-preemptible IO thus enables preemption of an originally

non-preemptible read IO request. Now, during the service of this IO, we have

two scenarios:

• No higher-priority IO arrives. In this case, the disk does not incur

additional overhead for transferring data due to disk prefetching (discussed

in Sections 4.2.1 and 4.2.4). (If Trot cannot mask seek-splitting, the system

can also choose not to perform seek-splitting.)

• A higher-priority IO arrives. In this case, the maximum waiting time

for the higher-priority request is now a mere 9 ms, if it arrives during one
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of the two seek disk commands. However, if the ongoing request is at the

stage of transferring data, the longest stall for the higher-priority request is

just 1 ms. The expected value for waiting time is only 1
2

2×92+25×12

2×9+25×1+3
= 2.03

ms, a significant reduction from 23 ms (see Section 4.2 for details).

This example shows that Semi-preemptible IO substantially reduces the ex-

pected waiting time and hence increases the preemptibility of disk access. How-

ever, if an IO request is preempted to service a higher-priority request, an extra

seek operation may be required to resume service for the preempted IO. The

distinction between IO preemptibility and IO preemption is an important one.

Preemptibility enables preemption, but incurs little overhead itself. Preemption

will always incur overhead, but it will reduce the service time for higher-priority

requests. Preemptibility provides the system with the choice of trading through-

put for short response time when such a tradeoff is desirable. We explore the

effects of IO preemption further, in Section 4.3.3.

4.1.2 Contributions

In summary, the contributions of Semi-preemptible IO are as follows:

• We introduce Semi-preemptible IO, which abstracts both read and write

IO requests so as to make them preemptible. As a result, the system can

substantially reduce the waiting time for a higher-priority request at little

or no extra cost.

• We show that making write IOs preemptible is not as straightforward as

it is for read IOs. We propose one possible solution for making them

preemptible.

• We present a feasible path to implement Semi-preemptible IO. We explain

how the implementation is made possible through use of a detailed disk

profiling tool.
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4.2 Semi-preemptible IO

Before introducing the concept of Semi-preemptible IO, let us first summarize

some terms which we will use throughout the rest of this chapter. Then, we

present the Semi-preemptible IO, a preemptible abstraction for disk IOs.

Definitions:

• A logical disk block is the smallest unit of data that can be accessed on a

disk drive (typically 512 B). Each logical block resides at a physical disk

location, depicted by a physical address (cylinder, track, sector).

• A disk command is a non-preemptible request issued to the disk over the

IO bus (e.g., the read, write, seek, and interrogative commands).

• An IO request is a request for read or write access to a sequential set of

logical disk blocks.

• The waiting time is the time between the arrival of a higher-priority IO

request and the moment the disk starts servicing it.
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Figure 4.1: Timing diagram for a disk read request.

In order to understand the magnitude of the waiting time, let us consider a

typical read IO request, depicted in Figure 4.1. The disk first performs a seek

to the destination cylinder requiring Tseek time. Then, the disk must wait for

a rotational delay, denoted by Trot, so that the target disk block comes under

the disk arm. The final stage is the data transfer stage, requiring a time of
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Ttransfer, when the data is read from the disk media to the disk buffer. This

data is simultaneously transferred over the IO bus to the system memory.

For a typical commodity system, once a disk command is issued on the IO

bus, it cannot be stopped. Traditionally, an IO request is serviced using a single

disk command. Consequently, the operating system must wait until the ongoing

IO is completed before it can service the next IO request on the same disk. Let

us assume that a higher-priority request may arrive at any time during the

execution of an ongoing IO request with equal probability. The waiting time

for the higher-priority request can be as long as the duration of the ongoing IO.

The expected waiting time of a higher-priority IO request can then be expressed

in terms of seek time, rotational delay, and data transfer time required for the

ongoing IO request as

E(Twaiting) =
1

2
(Tseek + Trot + Ttransfer). (4.1)

Let Vi be the sequence of fine-grained disk commands we use to service an IO

request. Let the time required to execute disk-command Vi be Ti. Let Tidle be

the duration of time during the servicing of the IO request, when the disk is idle

(i.e., no disk command is issued). Using the above assumption that the higher-

priority request can arrive at any time with equal probability, the probability

that it will arrive during the execution of the ith command Vi can be expressed

as pi = TiP
Ti+Tidle

. Finally, the expected waiting time of a higher-priority request

in Semi-preemptible IO can be expressed as

E(T ′waiting) =
1

2

∑
(piTi) =

1

2

∑
T 2
i

(
∑
Ti + Tidle)

. (4.2)

In the remainder of this section, we present 1) chunking, which divides

Ttransfer (Section 4.2.1); 2) just-in-time seek, which enables Trot preemption

(Section 4.2.2); and 3) seek splitting, which divides Tseek (Section 4.2.3). In ad-

dition, we present our disk profiler, Diskbench, and summarize all the disk pa-

rameters required for the implementation of Semi-preemptible IO (Section 4.2.4).
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4.2.1 Chunking: Preempting Ttransfer

The data transfer component (Ttransfer) in disk IOs can be large. For exam-

ple, the current maximum disk IO size used by Linux and FreeBSD is 128 kB,

and it can be larger for some specialized video-on-demand systems2. To make

the Ttransfer component preemptible, Semi-preemptible IO uses chunking.

Definition 4.2.1: Chunking is a method for splitting the data transfer compo-

nent of an IO request into multiple smaller chunk transfers. The chunk transfers

are serviced using separate disk commands, issued sequentially.

Benefits: Chunking reduces the transfer component of Twaiting. A higher-

priority request can be serviced after a chunk transfer is completed instead of

after the entire IO is completed. For example, suppose a 500 kB IO request

requires a Ttransfer of 25 ms at a transfer rate of 20 MBps. Using a chunk size of

20 kB, the expected waiting time for a higher-priority request is reduced from

12.5 ms to 0.5 ms.

Overhead: For small chunk sizes, the IO bus can become a performance bot-

tleneck due to the overhead of issuing a large number of disk commands. As a

result, the disk throughput degrades. Issuing multiple disk commands instead

of a single one also increases the CPU overhead for performing IO. However, for

the range of chunk sizes, the disk throughput using chunking is optimal with

negligible CPU overhead.

The Method

To perform chunking, the system must decide on the chunk size. Semi-

preemptible IO chooses the minimum chunk size for which the disk throughput

is optimal and the CPU overhead acceptable. Surprisingly, large chunk sizes can

also suffer from throughput degradation due to the sub-optimal implementation

2These values are likely to vary in the future. Semi-preemptible IO provides a technique
that does not deter disk preemptibility with the increased IO sizes.
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of disk firmware (Section 4.2.4). Consequently, Semi-preemptible IO may achieve

even better disk throughput than the traditional method where an IO request

is serviced using a single disk command.

In order to perform chunking efficiently, Semi-preemptible IO relies on the

existence of a read cache and a write buffer on the disk. It uses disk profiling

to find the optimal chunk size. We now present the chunking for read and write

IO requests separately.

The Read Case

Disk drives are optimized for sequential access, and they continue prefetching

data into the disk cache even after a read operation is completed [74]. Chunking

for read IO requests is illustrated in Figure 4.2. The x-axis shows time, and the

two horizontal time lines depict the activity on the IO bus and the disk head,

respectively. Employing chunking, a large Ttransfer is divided into smaller chunk

transfers issued in succession. The first read command issued on the IO bus

is for the first chunk. Due to the prefetching mechanism, all chunk transfers

following the first one are serviced from the disk cache rather than the disk

media. Thus, the data transfers on the IO bus (the small dark bars shown on

the IO bus line in the figure) and the data transfer into the disk cache (the dark

shaded bar on the disk-head line in the figure) occur concurrently. The disk

head continuously transfers data after the first read command, thereby fully

utilizing the disk throughput.
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Figure 4.2: Virtual preemption of the data transfer.
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Figure 4.3 illustrates the effect of the chunk size on the disk throughput

using a mock disk. The optimal chunk size lies between a and b. A smaller

chunk size reduces the waiting time for a higher-priority request. Hence, Semi-

preemptible IO uses a chunk size close to but larger than a. For chunk sizes

smaller than a, due to the overhead associated with issuing a disk command,

the IO bus is a bottleneck. Point b in Figure 4.3 denotes the point beyond which

the performance of the cache may be sub-optimal3.
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good firmware design

sub−optimal firmware design

chunk size chunk size
Chunk size

Figure 4.3: Effect of chunk size on disk throughput.

The Write Case

Semi-preemptible IO performs chunking for write IOs similarly to chunking

for read requests. However, the implications of chunking in the write case are

different. When a write IO is performed, the disk command can complete as

soon as all the data is transferred to the disk write buffer4. As soon as the write

3We have not fully investigated the reasons for sub-optimal disk performance and it is the
subject of our future work.

4If the size of the write IO is larger than the size of the write buffer, then the disk signals
the end of the IO as soon as the excess amount of data (which cannot be fitted into the disk
buffer) has been written to the disk media.
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command is completed, the operating system can issue a disk command to ser-

vice a higher-priority IO. However, the disk may choose to schedule a write-back

operation for disk write buffers before servicing a new disk command.We refer

to this delay as the external waiting time. Since the disk can buffer multiple

write requests, the write-back operation can include multiple disk seeks. Con-

sequently, the waiting time for a higher-priority request can be substantially

increased when the disk services write IOs.

In order to increase preemptibility of write requests, we must take into con-

sideration the external waiting time for write IO requests. External waiting can

be reduced to zero by disabling write buffering. However, in the absence of write

buffering, chunking would severely degrade disk performance. The disk would

suffer from an overhead of one disk rotation after performing an IO for each

chunk. To remedy external waiting, our prototype forces the disk to write only

the last chunk of the write IO to disk media by setting force-unit-access flag in

SCSI write command. Using this simple technique, it triggers the write-back

operation at the end of each write IO. Consequently, the external waiting time

is reduced since the write-back operation does not include multiple disk seeks.

4.2.2 JIT-seek: Preempting Trot

After the reduction of the Ttransfer component of the waiting time, the ro-

tational delay and seek time components become significant. The rotational

period (TP ) can be as much as 10 ms in current-day disk drives. To reduce the

rotational delay component (Trot) of the waiting time, we propose a just-in-time

seek (JIT-seek) technique for IO operations.

Definition 4.2.2: The JIT-seek technique delays the servicing of the next IO

request in such a way that the rotational delay to be incurred is minimized. We

refer to the delay between two IO requests, due to JIT-seek, as slack time.
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Benefits:

1. The slack time between two IO requests is fully preemptible. For example,

suppose that an IO request must incur a Trot of 5 ms, and JIT-seek delays the

issuing of the disk command by 4 ms. The disk is thus idle for Tidle = 4 ms.

Then, the expected waiting time is reduced from 2.5 ms to 1
2

1×1
1+4

= 0.1 ms. In

effect, the rotational delay for the next IO operation is made preemptible.

2. The slack obtained due to JIT-seek can also be used to perform data

prefetching for the previous IO or to service a background request, and hence

potentially increase the disk throughput.

Overhead: Semi-preemptible IO predicts the rotational delay and seek time

between two IO operations in order to perform JIT-seek. If there is an error in

prediction, then the penalty for JIT-seek is at most one extra disk rotation and

some wasted cache space for unused prefetched data.

The Method

Data TransferSeek TimePreemptible
Rotational

Data Transfer

JIT−seek

Seek Time

Slack

Delay
Rotational

Regular IO

with JIT−seek

Semi−preemptible IO 

Time

Time

Figure 4.4: JIT-seek.

The JIT-seek method is illustrated in Figure 4.4. The x-axis depicts time,

and the two horizontal lines depict a regular IO and an IO with JIT-seek, re-

spectively. With JIT-seek, the read command for an IO operation is delayed

and issued just-in-time so that the seek operation takes the disk head directly to

the destination block, without incurring any rotational delay at the destination

track. Hence, data transfer immediately follows the seek operation. The avail-
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able rotational slack, before issuing the JIT-seek command, is now preemptible.

We can make two key observations about the JIT-seek method. First, an accu-

rate JIT-seek operation reduces the Trot component of the waiting time without

any loss in performance. Second, and perhaps more significantly, the ongoing

IO request can be serviced as much as possible, or even completely, if sufficient

slack is available before the JIT-seek operation for a higher-priority request.

The pre-seek slack made available due to the JIT-seek operation can be used

in three possible ways:

• The pre-seek slack can be simply left unused. In this case, a higher-priority

request arriving during the slack time can be serviced immediately.

• The slack can be used to perform additional data transfers. Operating

systems can perform data prefetching for the current IO beyond the nec-

essary data transfer. We refer to this as free prefetching [53]. Chunking

is used for the prefetched data, to reduce the waiting time of a higher-

priority request. Free prefetching can increase the disk throughput. We

must point out, however, that free prefetching is useful only for sequential

data streams where the prefetched data will be consumed within a short

time. Operating systems can also perform another background request as

proposed elsewhere [53, 71].

• The slack can be used to mask the overhead incurred in performing seek-

splitting, which we shall discuss next.

4.2.3 Seek Splitting: Preempting Tseek

The seek delay (Tseek) becomes the dominant component when the Ttransfer

and Trot components are reduced drastically. A full stroke of the disk arm may

require as much as 20 ms in current-day disk drives. It may then be necessary

to reduce the Tseek component to further reduce the waiting time.
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Definition 4.2.3: Seek-splitting breaks a long, non-preemptible seek of the disk

arm into multiple smaller sub-seeks.

Benefits: The seek-splitting method reduces the Tseek component of the waiting

time. A long non-preemptible seek can be transformed into multiple shorter

sub-seeks. A higher-priority request can now be serviced at the end of a sub-

seek, instead of being delayed until the entire seek operation is finished. For

example, suppose an IO request involves a seek of 20, 000 cylinders, requiring a

Tseek of 14 ms. Using seek-splitting, this seek operation can be divided into two

9 ms sub-seeks of 10, 000 cylinders each. Then the expected waiting time for a

higher-priority request is reduced from 7 ms to 4.5 ms.

Overhead:

1. Due to the mechanics of the disk arm, the total time required to perform

multiple sub-seeks is greater than that for a single seek of a given seek distance.

Thus, the seek-splitting method can degrade disk throughput. Later in this

section, we discuss this issue further.

2. Splitting the seek into multiple sub-seeks increases the number of disk

head accelerations and decelerations, consequently increasing power usage and

noise.

The Method

To split seek operations, Semi-preemptible IO uses a tunable parameter, the

maximum sub-seek distance. The maximum sub-seek distance decides whether

to split a seek operation. For seek distances smaller than the maximum sub-seek

distance, seek-splitting is not employed. A smaller value for the maximum sub-

seek distance provides higher responsiveness at the cost of possible throughput

degradation.

Unlike the previous two methods, seek-splitting may degrade disk perfor-

mance. However, we note that the overhead due to seek-splitting can, in some
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cases, be masked. If the pre-seek slack obtained due to JIT-seek is greater than

the seek overhead, then the slack can be used to mask this overhead. A specific

example of this phenomenon was presented in Section 4.1. If the slack is insuf-

ficient to mask the overhead, seek-splitting can be aborted to avoid throughput

degradation. Making such a tradeoff, of course, depends on the requirements of

the application.

4.2.4 Disk Profiling

As mentioned in the beginning of this section, Semi-preemptible IO greatly

relies on disk profiling to obtain accurate disk parameters. The disk profiler

obtains the following required disk parameters:

• Disk block mappings. The system uses disk mappings for both logical-

to-physical and physical-to-logical disk block address transformation.

• Optimal chunk size. In order to efficiently perform chunking, Semi-

preemptible IO chooses optimal chunk size from the optimal range ex-

tracted using the disk profiler.

• Disk rotational factors. In order to perform JIT-seek, the system re-

quires an accurate rotational delay prediction, which relies on the ex-

tracted disk rotation period and rotational skew factors for disk tracks.

• Seek curve. JIT-seek and seek-splitting methods rely on accurate seek

time prediction.

The extraction of these disk parameters is described in Chapter 3.

As regards chunking, the disk profiler provides the optimal range for the

chunk size. Figure 4.5 depicts the effect of chunk size on the read throughput

performance for one SCSI and one IDE disk drive. Figure 4.6 shows the same for

the write case. Clearly, the optimal range for chunk size (between points a and
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Figure 4.5: Sequential read throughput vs. chunk size.
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Figure 4.6: Sequential write throughput vs. chunk size.
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b illustrated previously in Figure 4.3) can be automatically extracted from these

figures. Disk profiler implementation was successful in extracting optimal chunk

size for several SCSI and IDE disk drives with which we experimented. For

those who might also be interested in CPU overhead for performing chunking,

we present CPU utilization when transferring a large data segment from the

disk, using different chunk sizes in Figure 4.7 for an IDE disk. CPU utilization

decreases rapidly as chunk size increases. Beyond a chunk size of 50 kB, the

CPU utilization remains relatively constant. This figure shows that chunking,

using even small chunk size (50 kB), is feasible for an IDE disk without incurring

the significant CPU overhead. For SCSI disks, the CPU overhead of chunking

is even less than that for IDE disks, since the bulk of the processing is done by

the SCSI controller.
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Figure 4.7: CPU utilization vs. chunk size for IDE WD400BB.

To perform JIT-seek, the system needs an accurate estimate of the seek

delay between two disk blocks. The disk profiler provides the seek-time curve

as well as variations in seek time. A sample seek-time curve is presented in

Figure 4.8. The disk profiler also obtains the required parameters for rotational

delay prediction between accessing two disk blocks in succession with near-
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Figure 4.8: Seek curve for SCSI ST318437LW.

microsecond-level precision. However, the variations in seek time can be of the

order of one millisecond, which restricts the possible accuracy of prediction.

Finally, to perform JIT-seek, the system combines seek time and rotational

delay prediction to predict Trot. Detailed information about the prediction of

Trot and the disk profiling is presented in Chapter 3.

4.3 Experimental Evaluation

We now present the performance results for our implementation of Semi-

preemptible IO. Our experiments aimed to answer the following questions:

• What is the level of preemptibility of Semi-preemptible IO and how does

it influence the disk throughput?

• What are the individual contributions of the three components of Semi-

preemptible IO?

• What is the effect of IO preemption on the average response time for

higher-priority requests and disk throughput?
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4.3.1 Methodology

In order to answer these questions, we have implemented a prototype sys-

tem which can service IO requests using either the traditional non-preemptible

method (non-preemptible IO) or Semi-preemptible IO. Our prototype runs as a

user-level process in Linux and talks directly to a SCSI disk using the Linux

SCSI-generic interface. The prototype uses logical-to-physical block mapping of

the disk, seek curves, and rotational skew times, all of which are automatically

generated by Diskbench [25]. All experiments were performed on a Pentium III

800 MHz machine with a Seagate ST318437LW SCSI disk. This SCSI disk has

two tracks per cylinder, with 437 to 750 blocks per track, depending on the disk

zone. The total disk capacity is 18.4 GB. The rotational speed of the disk is

7200 RPM. The maximum sequential disk throughput is between 24.3 and 41.7

MBps.

For performance benchmarking, we performed two sets of experiments. First,

we tested the preemptibility of the system using simulated IO workload. For

the simulated workload, we used equal-sized IO requests within each experi-

ment. The low-priority IOs are for data located at random positions on the

disk. In the experiments where we actually performed preemption, the higher-

priority IO requests were also at random positions. However, their size was set

to only one block in order to provide the lower estimate for preemption over-

head. We tested the preemptibility under first-come-first-serve (FCFS) and

elevator disk scheduling policies. In the second set of experiments we used a

trace workload obtained on the tested Linux system. We acquired the traces

from the instrumented Linux-kernel disk-driver. In the simulated experiments,

non-preemptible IOs are serviced using chunk sizes of 128 kB. This is the size

used by Linux and FreeBSD for breaking up large IOs. We assume that a large

IO cannot be preempted between chunks, since such is the case for current op-

erating systems. On the other hand, our prototype services larger IOs using
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multiple disk commands and preemption is possible after each disk command is

completed. Based on disk profiling, our prototype used the following parame-

ters for Semi-preemptible IO. Chunking divided the data transfer into chunks of

50 disk blocks each, except for the last chunk, which can be smaller. JIT-seek

used an offset of 1 ms to reduce the probability of prediction errors. Seeks for

more than a half of the disk size in cylinders were split into two equal-sized,

smaller seeks. We used the SCSI seek command to perform sub-seeks.

4.3.2 Preemptibility

The experiments relating to the preemptibility of disk access measure the

duration of (non-preemptible) disk commands, in both non-preemptible IO and

Semi-preemptible IO, in the absence of higher-priority IO requests. The results

include both detailed distribution of disk commands durations (and hence max-

imum possible waiting time) and the expected waiting time calculated using

Equations 4.1 and 4.2, as explained in Section 4.2.

Generated Workload

Figure 4.9 depicts the difference in the expected waiting time between non-

preemptible IO and Semi-preemptible IO. In this experiment, IOs were serviced

for data situated at random locations on the disk, using FCFS scheduling policy.

The expected waiting time for non-preemptible IOs increases linearly with IO

size due to increased data-transfer time. However, the expected waiting time

for Semi-preemptible IO actually decreases with IO size, since the disk spends

more time in data transfer, which is more preemptible.

Figure 4.10 depicts improvements in the expected waiting time when the

system uses an elevator-based scheduling policy. (The figure shows the results

of randomly generated IO requests serviced in batches of 40.) The results are

better than those of FCFS access since the elevator scheduler reduces the seek

94



50 100 250 500 1000 2000
0

5

10

15

20

25

30

35

40

E
xp

ec
te

d 
w

ai
tin

g 
tim

e 
(m

s)

IO size (kB)

Non-preemptible IO
Semi-preemptible IO

Figure 4.9: Improvements in the expected waiting time (FCFS).

component that is the least-preemptible.

Figures 4.11 and 4.12 show the effect of improving IO preemptibility on the

achieved disk throughput when an FCFS scheduling policy is used. There is a

noticeable reduction in disk throughput using Semi-preemptible IO (less than

15%). This reduction is due to the overhead of seek-splitting and mis-prediction

of seek and rotational delay. More details on the accuracy of rotational delay

predictions can be found in Chapter 3. Another point worth mentioning is that

the reduction in disk throughput in Semi-preemptible IO is smaller for large IOs

than for small IOs due to the reduced number of seeks and hence the smaller

overhead.

Since disk commands are non-preemptible (even in Semi-preemptible IO),

we can use the duration of disk commands to measure the expected waiting

time. A smaller value implies a more preemptible system. Figure 4.13 shows

the distribution of the durations of disk commands for both non-preemptible IO

and Semi-preemptible IO (for exactly the same sequence of IO requests). In the

case of non-preemptible IO (Figure 4.13 (a)), one IO request is serviced using
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Figure 4.10: Improvements in the expected waiting time (Elevator).
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Figure 4.11: Effect on achieved disk throughput (FCFS).
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Figure 4.12: Effect on achieved disk throughput (Elevator).

a single disk command. Hence, the disk access can be preempted only when

the current IO request is completed. The distribution is dense near the sum of

the average seek time, rotational delay, and transfer time required to service an

entire IO request. The distribution is wider when the IO requests are larger,

because the duration of data transfer depends not only on the size of the IO

request, but also on the throughput of the disk zone where the data resides.

In the case of Semi-preemptible IO, the distribution of the durations of disk

commands does not directly depend on the IO request size, but on individual

disk commands used to perform an IO request. (We plot the distribution for the

Semi-preemptible IO case in logarithmic scale, so that the probability density

of longer disk commands can be better visualized.) In Figure 4.13 (b), we see

that for Semi-preemptible IO, the largest probability density is around the time

required to transfer a single chunk of data. If the chunk includes the track or

cylinder skew, the duration of the command will be slightly longer. (The two

peaks immediately to the right of the highest peak, at approximately 2 ms, have

the same probability because the disk used in our experiments has two tracks
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per cylinder.) The part of the distribution between 3 ms and 16 ms in the

figure is due to the combined effect of JIT-seek and seek-splitting on the seek

and rotational delays. The probability for this range is small, approximately

0.168, 0.056, and 0.017 for 50 kB, 500 kB, and 2 MB IO requests, respectively.

Trace Workload

Trace Number of Avg. req. size Max. block
requests [blocks] number

DV15 10800 128.7 28442272
Elevator15 10180 127.6 28429968

TPC 1376482 126.5 8005312

Table 4.1: Trace summary.

We now present preemptibility results using IO traces obtained from a Linux

system. IO traces were obtained from three applications. The first trace (DV15)

was obtained when the Xtream multimedia system [21] was servicing 15 simul-

taneous video clients using the FCFS disk scheduler. The second trace (El-

evator15) was obtained using similar setup where Xtream lets Linux elevator

scheduler to handle concurrent disk IOs. The third was a disk trace of the TPC-

C database benchmark with 20 warehouses obtained from [61]. Trace summary

is presented in Table 4.1.

Figures 4.14 and 4.15 show the expected waiting time and disk throughput

for these trace experiments. The expected waiting time was reduced by as much

as 65% (Figure 4.14) with less than 10% (Figure 4.15) loss in disk throughput

for all traces. (Elevator15 had smaller throughput than DV15 because several

processes were accessing the disk concurrently, which increased the total number

of seeks.)
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Figure 4.13: Distribution of the disk command duration (FCFS). Smaller values
imply a higher preemptibility.
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Figure 4.15: Effect on the achieved disk throughput (using disk traces).
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Individual Contributions

Figure 4.16 shows the individual contributions of the three strategies with

respect to expected waiting time for the random workload with the elevator

scheduling policy. In Section 4.3.2, we showed that the expected waiting time

can be significantly smaller in Semi-preemptible IO than in non-preemptible IO.

Here we compare only contributions within Semi-preemptible IO to show the

importance of each strategy. Since the time to transfer a single chunk of data is

small compared to the seek time (typically less than 1 ms for a chunk transfer

and 10 ms for a seek), the expected waiting time decreases as the data transfer

time becomes more dominant. When the data transfer time dominates the

seek and rotational delays, chunking is the most useful method for reducing the

expected waiting time. When the seek and rotational delays are dominant, JIT-

seek and seek-splitting become more effective in reducing the expected waiting

time.
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Figure 4.16: Individual contributions of Semi-preemptible IO components on
the expected waiting time (Elevator).

Figure 4.17 summarizes the individual contributions of the three strategies
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Figure 4.17: Individual effects of Semi-preemptible IO strategies on disk
throughput (Elevator).

with respect to the achieved disk throughput. Seek-splitting can degrade disk

throughput, since whenever a long seek is split, the disk requires more time to

perform multiple sub-seeks. JIT-seek requires accurate prediction of the seek

time and rotational delay. It introduces overhead in the case of mis-prediction.

However, when the data transfer is dominant, benefits of chunking can mask

both seek-splitting and JIT-seek overheads. JIT-seek aids the throughput with

free prefetching. The potential free disk throughput acquired using free prefetch-

ing depends on the rate of JIT-seeks, which decreases with IO size. We believe

that the free prefetching is a useful strategy for multimedia systems that often

access data sequentially and hence can use most of the potential free throughput.

4.3.3 Preemptions

To estimate the response time for higher-priority IO requests, we conducted

experiments wherein higher-priority requests were inserted into the IO queue at
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a constant rate (ν). While the constant arrival rate may seem unrealistic, the

main purpose of this set of experiments is only to “estimate” the benefits and

overhead associated with preempting an ongoing Semi-preemptible IO (in order

to service a higher-priority IO request).

Preempting Read IOs

Table 4.2 presents the response time for a higher-priority request when using

Semi-preemptible IO in two possible scenarios: (1) when the higher-priority

request is serviced after the ongoing IO is completed (non-preemptible IO), and

(2) when the ongoing IO is preempted to service the higher-priority IO request

(Semi-preemptible IO). If the ongoing IO request is not preempted, then all

higher-priority requests that arrive while it is being serviced must wait until

the IO is completed. The results in Table 4.2 illustrate the case when the

ongoing request is a read request. The results for the write case are presented

in Table 4.5.

IO ν Avg. Resp. [ms] Throughput [MB/s]
[kB] [req/s] npIO spIO npIO spIO

50 0.5 19.2 19.4 3.39 2.83
50 1 21.8 16.0 3.36 2.89
50 2 20.8 17.6 3.32 2.82
50 5 21.0 18.2 3.18 2.62
50 10 21.2 18.3 2.95 2.30
50 20 21.1 18.4 2.49 1.68

500 0.5 29.2 15.7 16.25 16.40
500 1 28.1 15.5 16.15 16.20
500 2 28.2 16.7 15.94 15.77
500 5 28.6 16.0 15.28 14.58
500 10 28.9 16.3 14.24 12.48
500 20 29.4 16.8 11.96 8.57

Table 4.2: The average response time and disk throughput for non-preemptible
IO (npIO) and Semi-preemptible IO (spIO).
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Each time a higher-priority request preempts a low-priority IO request for

disk access, an extra seek is required to resume servicing the preempted IO after

the higher-priority request has been completed. Table 4.2 presents the average

response time and the disk throughput for different arrival rates of higher-

priority requests. For the same size of low-priority IO requests, the average

response time does not increase significantly with the increase in the arrival

rate of higher-priority requests. However, the disk throughput does decrease

with an increase in the arrival rate of higher-priority requests. As explained

earlier, this reduction is expected since the overhead of IO preemption is an

extra seek operation per preemption.
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Figure 4.18: The average response time for higher-priority requests depending
on their arrival rate (ν). Ongoing IO requests are 2, 000 kB each.

Figure 4.18 depicts the average response time for higher-priority requests

depending on their arrival rate (ν). The low-priority requests are 2, 000 kB

each. By preempting the ongoing semi-preemptible IOs, the response time for

a high priority request was reduces by a factor of four. The maximum response

times (not shown) for Semi-preemptible IO with and without preemption were

measured as 34.6 ms and 150.1 ms respectively. More extensive experimental
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results are presented in Table 4.2.

0

5

10

15

20

25

30

0 5 10 15 20

D
is

k 
th

ro
ug

hp
ut

 (
M

B
/s

)

Arrival rate for high-priority requests (req/s)

No preemption
Preemption

Figure 4.19: Disk throughput for 2, 000 kB IOs depending on the arrival rate of
higher-priority requests (ν).

Preemption of IO requests does not come without costs. Each time a higher-

priority request preempts a low-priority semi-preemptible IO, an extra seek is

required to resume the preempted IO after the high-priority request completes.

Figure 4.19 presents the disk throughput depending on the arrival rate of the

higher-priority requests. Table 4.3 summarizes the results from Figures 4.18

and 4.19.

ν npIO spIO
[Hz] mean σ max mean σ max

0.5 49.7 74.6 100.1 14.7 21.2 23.1
1 47.4 71.1 115.1 14.8 21.4 25.2
2 47.8 71.7 96.6 13.9 20.1 24.6
5 47.8 71.7 117.2 15.0 21.7 29.8

10 46.2 69.5 110.9 14.5 21.1 33.9
20 50.9 75.8 150.1 14.9 21.6 34.6

Table 4.3: Response time with and without preemption for 2, 000 kB IOs (mean,
standard deviation (σ), and maximum).
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Preempting Write IOs

Exp. Waiting [ms] Avg. Response [ms]
IO npIO spIO npIO spIO
[kB] RD WR RD WR RD WR RD WR

50 8.2 11.4 3.9 9.5 21.8 105.8 16.0 24.6
250 11.8 12.9 3.1 5.6 25.5 27.2 16.1 21.2
500 16.4 18.7 2.5 4.7 28.1 36.0 15.5 20.3

1, 000 25.9 33.3 1.9 3.7 36.8 45.7 14.4 19.5
2, 000 45.4 60.9 1.4 2.9 58.3 70.0 14.7 18.3

Table 4.4: The expected waiting time and average response time for non-
preemptible and Semi-preemptible IO (ν = 1 req/s).

In Section 4.2.1, we explained the difference in the preemptibility of read and

write IO requests and introduced the notion of external waiting time. Table 4.4

summarizes the effect of external waiting time on the preemption of write IO

requests. The arrival rate of higher-priority requests is set to ν = 1 req/s. As

shown in Table 4.4, the average response time for higher-priority requests for

write experiments is several times longer than for read experiments. Since the

higher-priority requests have the same arrival pattern in both experiments, the

average seek time and rotational delay are the same for both read and write

experiments. The large and often unpredictable external waiting time in the

write case explains these results.

Table 4.5 presents the results of our experiments, aimed at finding out the

effect of write IO preemption on the average response time for higher-priority

requests and disk write throughput. For example, in the case of 50 kB write IO

requests, the disk can buffer multiple requests, and the write-back operation can

include multiple seek operations. Semi-preemptible IO succeeds in reducing ex-

ternal waiting time and provides substantial improvement in the response time.

However, since the disk is able to efficiently reorder the buffered write requests

in the case of non-preemptible IO, it achieves better disk throughput. For large

IO requests, Semi-preemptible IO achieves write throughput comparable to that
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IO ν Avg. Response [ms] Throughput [MB/s]
[kB] [req/s] npIO spIO npIO spIO

50 0.5 93.1 26.9 4.85 1.98
50 1 105.8 24.6 4.75 1.96
50 2 91.1 22.7 4.68 1.94
50 5 102.2 24.4 4.40 1.84
50 10 87.5 23.7 3.95 1.70
50 20 81.3 23.3 3.09 1.42

500 0.5 32.4 20.3 13.71 11.41
500 1 36.0 20.3 13.64 11.24
500 2 35.0 20.8 13.45 11.02
500 5 34.9 20.5 12.82 10.36
500 10 36.6 20.3 11.67 9.13
500 20 34.6 20.7 9.64 6.92

Table 4.5: The average response time and disk write throughput for non-
preemptible and Semi-preemptible IO.

of non-preemptible IO. We suggest that write preemption can be disabled when

it is essential to maintain the high system throughput, and the disk reordering

is useful (reordering could also be done in the operating system scheduler using

low-level disk knowledge).

4.3.4 Summary of Results

First, we showed that Semi-preemptible IO can reduce the expected waiting

time (hence, improve disk preemptibility) to about 3ms for small IOs (of the

order of 50 kB) and to about 1 ms for larger IOs (of the order of 1 MB and

more), with little loss in disk throughput. The expected waiting time for non-

preemptible access is about 5 ms and 20 ms, respectively.

Second, we found out that read and write disk access experiences different

levels of preemptibility. Semi-preemptible IO must consider additional external

waiting time when servicing write IOs.

107



Third, we found out that current disk drives do not necessarily provide

the optimal sequential throughput for all chunk sizes (Section 4.2.4). Disk

schedulers must first profile the disk and then ensure that they use the optimal

chunk size for their sequential accesses.

4.4 Summary

In this chapter, we have presented the design of Semi-preemptible IO, and

proposed three techniques for reducing IO waiting-time — data transfer chunk-

ing, just-in-time seek, and seek-splitting. These techniques enable the preemp-

tion of a disk IO request, and thus substantially reduce the waiting time for

a competing higher-priority IO request. Using both synthetic and trace work-

loads, we have shown that these techniques can be efficiently implemented,

given detailed disk parameters. Our empirical studies have shown that Semi-

preemptible IO can reduce the waiting time for both read and write requests

significantly when compared with non-preemptible IOs.

We believe that preemptible IO can especially benefit multimedia and real-

time systems, which are delay-sensitive and which issue large-size IOs for meet-

ing real-time constraints. We are currently implementing Semi-preemptible IO

in Linux kernel. We plan to further study its performance impact on traditional

and real-time disk-scheduling algorithms.
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Chapter 5

Preemptive RAID Scheduling

In this chapter we investigate the effectiveness of preemptive disk-scheduling

algorithms to achieve better quality of service (QoS). We present an architecture

for QoS-aware RAID systems based on Semi-preemptible IO [20, 22]. We show

when and how to preempt IOs to improve the overall performance of the RAID.

Using our simulator for preemptible RAID systems, we evaluate the benefits

and estimate the overhead of the proposed approach.

5.1 Introduction

Emerging applications such as video surveillance, large-scale sensor net-

works, storage-bound Web applications, and virtual reality require high-capacity,

high-bandwidth RAID storage to support high-volume IOs. All these appli-

cations typically access large sequential data-segments to achieve high disk

throughput. In addition to high-throughput non-interactive traffic, these ap-

plications also service a large number of interactive requests, requiring a short

response time. The deployment of high-bandwidth networks promised by re-

search projects such as OptIPuter[87] will further magnify the access-time bot-

tleneck of a remote RAID store, inevitably making the access-time reduction
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increasingly important.

What is the worst-case disk-access time, and how can it be mitigated? On

an idle disk, the access time is composed of a seek and a rotational delay.

However, when the disk is servicing an IO, a new interactive IO, requiring a

short response time, must wait at least until after the ongoing IO has been

completed. For the applications mentioned earlier, the typical IO sizes are

of the order of a few megabytes. For example, while concurrently servicing

interactive queries, the Google File System [35] stores data in 64 MB chunks and

video surveillance systems [17, 70] record video segments of several megabytes

each. Another example is a virtual-reality flight simulator from the TerraFly

project [16], which continuously streams the image data for multiple users from

their database of satellite images. Simultaneously, the system must support

interactive user operations.

In this chapter, we introduce preemptive RAID scheduling, or Praid. In

Semi-preemptible IO [22] we investigated the preemptibility of disk access. In

addition to Semi-preemptible IO, Praid provides 1) preemption mechanisms to

allow the ongoing IOs to be preempted, and 2) resumption mechanisms to re-

sume preempted IOs on same or different disks. We also propose scheduling

policies to decide whether and when to preempt, for maximizing the yield, or

the total value, of the schedule. Since the yield of an IO is application- and

user-defined, our scheduler maps external value propositions to internal yields,

producing a schedule that can maximize total external value for all IOs, pending

and current.

110



5.1.1 Illustrative Example

We now present an example to show how preemptive scheduling works, and

why it can outperform a traditional priority-based scheduling policy. Suppose

that the disk is servicing a long sequential write when a higher priority read IO

arrives. The new IO can arrive at either time t1 or t2, as depicted in Figure 5.1.

If the write IO has been buffered in a non-volatile RAID buffer1, the IO can

be preempted to service the new request. The preempted write IO is delayed,

to be serviced at a later time. When the write IO is resumed, additional disk

overhead is incurred. We refer to this overhead as a preemption overhead.

t2t1

timedisk d1 seek data transfer

Figure 5.1: Sequential disk access.

Now, a simple priority-based scheduler will always preempt the long sequen-

tial write access (and incur a preemption overhead) regardless of whether the

read IO arrives at time t1 or t2. However, preempting the write access at t2

may not be profitable, since the write is nearly completed. Such a preemption

is likely to be counter-productive — not gaining much in response time, but

incurring preemption overhead. Our Praid scheme is able to discern whether

and when a preemption should take place.

The above example shows just one simple scenario where additional mech-

anisms can lead to performance gains for RAID systems. In the rest of this

chapter, we will detail our preemption mechanisms and scheduling policies.

1Most current RAID systems are equipped with a large non-volatile buffer. Write IOs are
reported to the operating system as serviced, as soon as the IO data is copied into this buffer.
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5.1.2 Contributions

In addition to the overall approach, the specific contributions of this chapter

can be summarized as follows:

• Preemption mechanisms. We introduce two methods to preempt disk IOs

in RAID systems — JIT-preemption and JIT-migration. Both methods

are used by the preemptive schedulers (presented in this chapter) to sim-

plify preemption decisions.

• Preemptible RAID policies. We propose scheduling methods which aim to

maximize the total QoS value (each IO is tagged with a yield function)

and use this metric to decide whether IO preemption is beneficial or not.

• System architecture for preemptible RAID systems. We introduce an ar-

chitecture for QoS-aware RAID systems based on the preemptible frame-

work. We implement a simulator for these systems (PraidSim) that is used

in evaluating our approach.

The rest of this chapter is organized as follows: Section 5.2 introduces the

preemption methods used for preemptive RAID scheduling. Section 5.3 presents

the preemptible-RAID system architecture and the scheduling framework. In

Section 5.4, we present our experimental environment and evaluate different

scheduling approaches using simulation. We summarize and suggest directions

for future work in Section 5.5.
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5.2 Mechanisms

In this section we introduce methods for IO preemption and resumption.

We first summarize the Semi-preemptible IO introduced in Chapter 4. We then

explain the following three mechanisms for IO preemption: 1) JIT-preemption

with IO resumption at the same disk, 2) JIT-preemption with migration of the

ongoing IO to a different disk (favoring the newly arrived IO), and 3) preemption

with JIT-migration of the ongoing IO (favoring the ongoing IO).

Semi-preemptible IO

Semi-preemptible IO [22] maps each IO request into multiple fast-executing

(and hence short-duration) disk commands using three methods. (The ongoing

IO request can be preempted between these disk commands.) Each of these

three methods addresses the reduction of one of the following IO components:

Ttransfer (denoting transfer time), Trot (denoting rotational delay), and Tseek

(denoting seek time).

1. Chunking Ttransfer. A large IO transfer is divided into a number of small

chunk transfers, and preemption is made possible between the small transfers.

If the IO is not preempted between chunk transfers, chunking does not incur

any overhead. This is due to the prefetching mechanism in current disk drives.

2. Preempting Trot. By performing just-in-time (JIT) seek for servicing an IO

request, the rotational delay at the destination track is virtually eliminated.

The pre-seek slack time thus obtained is preemptible. This slack can also be

used to perform prefetching for the ongoing IO request, and/or to perform

seek splitting.

3. Splitting Tseek. Semi-preemptible IO splits a long seek into sub-seeks, and

permits preemption between two sub-seeks.
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IO1 IO2
timedisk d1

regions
Fully preemptible

Preemption points

...

Figure 5.2: Possible preemption points for semi-preemptible IO.

Figure 5.2 shows the possible preemption points while servicing a semi-

preemptible IO. Preemption is possible only after completion of any disk com-

mand or during disk idle time. The regions before the JIT-seek operation are

fully preemptible (since no disk command is issued). The seek operations are

the least preemptible, and the data transfer phase is highly preemptible (pre-

emption is possible after servicing each chunk, which is about 0.5 ms).2

5.2.1 JIT-preemption

When the disk scheduler decides that preempting and delaying an ongoing

IO would yield a better overall schedule, the IO should be preempted using JIT-

preemption. This is a local decision, meaning that a request for the remaining

portion of the preempted IO is placed back in the local queue, and resumed

later on the same disk (or dropped completely3).

Definition 5.2.1: JIT-preemption is a method for preempting an ongoing semi-

preemptible IO at points that minimize the rotational delay at the destination

track (for the higher-priority IO which is serviced next). The scheduler de-

cides when to preempt the ongoing IO using knowledge about available JIT-

preemption points. These points are roughly one disk rotation apart.

Preemption: This method relies on JIT-seek (described in Semi-preemptible

2If we know in advance when to preempt the ongoing IO, we can choose the size for the
last data-transfer chunk before preemption, and further tune the desired preemption point.

3For example, the scheduler may drop unsuccessful speculative reads, cache-prefetch op-
erations, or preempted IOs whose deadlines have expired.
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IO [22]), which requires rotational delay prediction (also used in other disk

schedulers [45, 53]). JIT-preemption is similar to free-prefetching [53]. However,

if the preempted IO will be completed later, then the JIT-preemption always

yields useful data transfer (prefetching may or may not be useful).4

IO2

IO1 IO2
timedisk d1

arrives

T rot

Figure 5.3: Possible JIT-preemption points.

Figure 5.3 depicts the positions of possible JIT-preemption points. If IO1 is

preempted anywhere between two such points that are adjacent, the resulting

service time for IO2 would be exactly the same as in a situation where the

preemption is delayed until the next possible JIT-preemption point. This is

because the rotational delay at the destination track varies depending on when

the seek operation starts. The rotational delay is minimal at the JIT-preempt-

ion points, which are roughly one disk rotation apart.

IO1 IO2

IO2

timedisk d1

JIT−seek

IO1’
Preemption
overhead

arrives

Figure 5.4: JIT-preemption during data transfer.

Figure 5.4 depicts the case where the ongoing IO1 is preempted during its

data transfer phase in order to service IO2. In this case, the first available

JIT-preemption point is chosen. The white regions represent the access-time

overhead (seek time and rotational delay for an IO). Since JIT-seek minimizes

4Another difference is that JIT-preemption can also be used for write IOs, although its
implementation outside of disk firmware is more difficult for write IOs than it is for read
IOs [22].
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rotational delay for IO2, its access-time overhead is reduced for the case with

JIT-preemption (compared to the no-preemption case depicted in Figure 5.3).

Resumption: The preempted IO is resumed later on the same disk. Preemp-

tion overhead (depicted in Figure 5.4) is the additional seek time and rotational

delay required to resume the preempted IO1. Depending on the scheduling

decision, IO1 may be resumed immediately after IO2 completes, at some later

time, or never (it is dropped and does not complete). We explain scheduling

decisions in detail later in Section 5.3.3.

5.2.2 JIT-preemption with Migration

RAID systems duplicate data for deliberate redundancy. If an ongoing IO

can also be serviced at some other disk that holds a copy of the data, the

scheduler has the option of preempting the IO and migrating its remaining

portion to the other disk. In the traditional static RAIDs, this situation can

happen in RAID levels 1 and 0/1 [14] (mirrored or mirrored/striped configu-

ration). It might also happen in reconfigurable RAID systems (for example,

HP AutoRAID [100]), in object-based RAID storage [58], or in non-traditional

large-scale software RAIDs [35].

Definition 5.2.2: JIT-preemption-with-migration is a method for preempting

the ongoing IO and migrating it to a different disk in a fashion that minimizes

service time for newly arrived IO.

Preemption: For preemption, this method relies on the previously described

JIT-preemption. Figure 5.5 depicts the case when it is possible to use JIT-

preemption to promptly service IO2, while migrating IO1 to another disk. Pre-

emption overhead is in the form of additional seek time and rotational delay

required for the completion of IO1 at the replica disk.

Resumption: The preempted IO is resumed later on the disk to which it was

migrated. The preempted IO enters the scheduling queue of the mirror disk and
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Figure 5.5: JIT-preemption with migration.

is serviced according to the single-disk scheduling policy. Preemption overhead

exists only at the mirror disk. This suggests that this method may be able to

improve the schedule when load balance is hard to achieve.

5.2.3 JIT-migration

When a scheduler decides to migrate the preempted IO to another disk with

a copy of the data, it can choose to favor the newly arrived IO or the ongoing IO.

The former uses JIT-preemption introduced earlier, but migrates the remaining

portion of the preempted IO to the queue of some other disk holding the data.

The latter uses JIT-migration.

Definition 5.2.3: JIT-migration is a method for preempting and migrating

an ongoing IO in a fashion that minimizes its service time. The ongoing IO

is preempted at the moment when the destination disk starts performing data-

transfer for the remaining portion of the IO. The original IO is then preempted,

but its completion time is not delayed.

Preemption: JIT-migration also relies on JIT-seek and is used to preempt

and migrate the ongoing IO only if it does not increase its service time thereby

favoring the ongoing IO.

Figure 5.6 depicts the case when the ongoing IO (IO1) is more important

than the newly arrived IO (IO2). However, if the disk with the replica is idle

or servicing less important IOs, we can still reduce the service time for IO2. As
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(queueing time and access time)

Figure 5.6: Preemption with JIT-migration.

soon as IO2 arrives, the scheduler can issue a speculative migration to another

disk with a copy of the data. When the data transfer is ready to begin at

the other disk, the scheduler can migrate the remaining portion of IO1 at the

desired moment. Since the disks are not necessarily rotating in unison, the IO1

can be serviced only at approximately the same time when compared with the

no-preemption case. The preemption delay for IO1 depends on the queue at

the disk with the replica. If the disk with the replica is idle, the delay will be

of the order of 10 ms (equivalent to the access-time overhead).

Resumption: In the case of JIT-migration, IO1 is not preempted until the disk

with the mirror is ready to continue its data transfer. Again, the preemption

overhead exists only at the mirror disk signifying the possibility of improvement

in the presence of a load-imbalance.
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5.3 Architecture

In this section, we first present a high-level system architecture for RAID

systems with support for preemptive disk scheduling. We then explain global

(RAID) and local (single-disk) scheduling approaches. All scheduling methods

presented within this framework are designed to be implemented in the firmware

for hardware RAID controllers or in the OS driver for software RAIDs.

5.3.1 PRAID System Architecture

Figure 5.7 depicts a simplified architecture of preemptible RAID systems.

The main system components are the external IO interface, the RAID controller,

and the attached disks. The components of the RAID controller are the RAID

scheduler, the single-disk schedulers (one for each disk in the array), the RAID

cache (both the volatile read cache and the non-volatile write buffer), and the

RAID reconfiguration manager.

External IOs are issued by the IO scheduler external to the RAID system

(for example, the operating system’s disk scheduler). These IOs are tagged

with their QoS requirements, so that the RAID scheduler can optimize their

scheduling. The external IOs may also be left untagged, making them best-

effort IOs. We have extended a Linux kernel to enable such an IO interface [27].

The RAID scheduler maps external IOs to internal IOs and dispatches them

to appropriate single-disk scheduling queues. Internal IOs are also generated by

the RAID reconfiguration manager for various maintenance, reconfiguration, or

failure-recovery procedures.

Internal IOs are IOs which reside in the scheduling queues of individual disks.

They are tagged with internally generated yield functions, and serviced using

Semi-preemptible IO. The RAID scheduler and the local single-disk schedulers

reside on the same RAID controller, and communication between them is fast
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Figure 5.7: A simplified Preemptible RAID architecture.

and cheap.5

Single-disk schedulers make local scheduling decisions for internal IOs wait-

ing to be serviced at a disk. Internal IOs are semi-preemptible, and single-disk

schedulers can decide to preempt ongoing internal IOs. Since the communica-

tion between individual disk schedulers is efficient, single-disk schedulers in the

same RAID group cooperate to improve the overall QoS-value for the entire

system.

The RAID cache consists of both volatile memory for caching read IO data

5The assumption of efficient communication between single-disk schedulers holds for most
RAID systems implemented as a single box, which is typically the case for current RAID
systems. We use this assumption for efficient migration of internal IOs from one disk to
another.
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and non-volatile memory for buffering write IO data. The non-volatile memory

is typically implemented as battery-backed RAM in most currently used RAIDs.

The RAID reconfiguration manager controls and optimizes internal data organi-

zation within the RAID system. For instance, in HP AutoRAID systems [100],

the reconfiguration manager can dynamically reconfigure the data to optimize

for the performance (between RAID 0/1 and RAID 5 configurations) or migrate

the data to hot-swap disks (in case of disk failures). These operations create

additional internal IOs within the RAID system.

5.3.2 Global RAID Scheduling

The global RAID scheduler is responsible for mapping external IOs to inter-

nal IOs and for dispatching internal IOs to appropriate single-disk scheduling

queues.

External IOs

In this chapter we refer to IO requests generated by a file system outside of

the RAID system as external IOs. They can be tagged with the application-

specified QoS class or can be left as regular, best-effort requests.6

Our approach for providing QoS hints to the disk scheduler is to enable ap-

plications to specify desired QoS parameters per each file descriptor. Internally,

we pass the pointer to these QoS parameters along with each IO request in the

disk queue. After the open() system call, file accesses get assigned the default

best-effort QoS class. We introduce several new ioctl() commands which en-

able an application to set up different QoS parameters for its open files. These

additional ioctl() commands are summarized in Table 5.1.

6Most commodity operating systems still do not provide such an interface. However,
several research prototypes have implemented QoS extensions for commodity operating sys-
tems [59, 90, 93, 27]
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Ioctl command Argument Description

IO GET QOS struct ucsb io * Get file’s QoS
IO BESTEFFORT Set best-effort class
IO QOS CLASS int *class Set IO’s QoS class
IO PRIORITY int *priority Set IO’s priority
IO DEADLINE int *deadline Set IO’s deadline

Table 5.1: Additional ioctl() commands.

yield

time

yield

time

response time

time

(c) (d)

(b)(a)

yield

time
Max. acceptable

response timeresponse time

Max. acceptable

Latest optimal

Latest optimal
response time

yield

Max. acceptable
response time

Figure 5.8: Yield functions: (a) interactive real-time IO, (b) hard real-time IO,
(c) interactive best-effort IO, and (d) best-effort IO. (The exact values depend
on the actual implementation.)

The yield function attached to an external IO determines the QoS value

added to the system upon its completion. Figure 5.8 depicts four possible

yield functions that we use in this study. Functions (a) and (b) represent the

case when a hard deadline is associated with servicing the IO. If the deadline is

missed, the IO should be dropped since its completion does not yield any value.7

7The option of dropping an IO request at the storage level is not widely used in today’s
systems. Additional handling might be needed at the user level. However, the current interface
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Servicing best-effort IOs always yields some QoS value, and these IOs should

not be dropped. We must point out that the yield functions presented here are

not the only ones possible. The framework enables specifying one “user-defined”

yield function for each QoS class, which is part of our future work.

To customize the yield (yext(t)) function for each external IO, we use a

generic yield function for each QoS class (yield(t) from Figure 5.8) and four

additional parameters. The additional parameters are: time when the external

IO is submitted (tstart), IO size (size), IO priority (p), and IO deadline (Tdeadln).

We assign more value to a larger and higher-priority IO using a linear approach.

Our system provides an option for the OS or user-level applications to customize

yield functions according to the following equation (Pdef denotes the default

priority):

yext(t) = size× p

Pdef
× yield

(
t− tstart
Tdeadln

)
. (5.1)

For example, if the OS wants to give more QoS value to particular IOs, it

would then assign a priority that is greater than the default one. If the OS

wants to stretch the yield function (from Figure 5.8), it would then assign a

longer deadline. Finally, if the OS wants to specify the same yield function for

all IOs independent of their size, it would then assign different priorities (higher

priority for shorter IOs and lower priority for longer IOs).8

RAID Scheduler

The most important task that the RAID scheduler performs is mapping

external IOs to internal IOs. Internal IOs are also generated by the RAID

reconfiguration manager, and scheduled to appropriate local-disk queues by the

RAID scheduler. Each external IO (parent IO) is mapped to a set of internal

need not be changed, since systems can use the existing error-handling mechanisms.
8In real systems, additional QoS classes for same-importance IOs may be favorable.
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IOs (child IOs). To perform this mapping, the RAID scheduler has to be aware

of the low-level placement of data on the RAID system.

The RAID scheduler has a global view of the load on each of the disks in

the array. For read IOs, the internal IO can be scheduled to any disk containing

a copy of the data. The scheduler can choose the least-loaded disk or use a

round-robin strategy. For write IOs, the internal IOs are dispatched to all disks

where duplicate copies are located. To maintain a consistent view, the segment

in the non-volatile RAID buffer is not freed until all its internal IOs finish.

The RAID scheduler makes the following scheduling decisions to dispatch

internal IOs to corresponding local-disk scheduling queues:

• Read splitting. To further reduce response time for interactive read re-

quests, the RAID scheduler may split the read request into as many parts

as there are disks with copies of the data, issuing each part to a different

disk. The read request might be completed faster by utilizing all possible

disks. However, this involves more disk-seek overhead. The advantage of

having QoS values over the traditional RAIDs enables preemptible RAIDs

to split only interactive IOs (when additional seek overhead leads to better

QoS).

• Speculative scheduling. Apart from dispatching read requests to the least-

loaded disk, the RAID scheduler might also dispatch the same request with

best-effort priority to other disks which hold a copy of the data requested.

This is done in the hope that if a more loaded disk manages to clear its

load earlier, then the read request can be serviced sooner.

5.3.3 Local Disk Scheduling

Using a local disk scheduling algorithm, single-disk schedulers dispatch in-

ternal (semi-preemptible) IOs and decide about IO preemptions.
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Internal IOs

We refer to IO requests generated within the RAID system as internal IOs.

These IOs are generated by the RAID firmware and managed by the RAID

system itself. Usually, multiple internal IO requests (for several disks) must

be issued to service each external IO. Requests related to data parity manage-

ment, RAID auto reconfiguration, data migration, and data recovery are inde-

pendently generated by the RAID reconfiguration manager, and they are not

associated with any external IO. Each internal IO is tagged with its own descrip-

tor. The internal IO descriptor is summarized in Table 5.2. The deadline and

the yield function for the parent IO are used to (1) give more local-scheduling

priority to earlier deadlines and (2) drop the internal IO after its hard deadline

expires.

Attribute Description

Starting block Logical number for 1st data block
IO Size The internal IO size in disk blocks
Parent’s IO value The external IO value (from Eq. 5.1)
Parent’s deadline The external IO deadline
Parent’s IO size The remaining external IO size

Table 5.2: Internal IO descriptor.

Single-disk Scheduler

For external IOs whose value deteriorates rapidly with time, a disk sched-

uler may benefit if it preempts less urgent IOs. In traditional systems this is

usually accomplished by bounding the size of disk IOs to relatively small values

and using non-preemptive priority scheduling (for example, Linux 2.4 and 2.6

kernels use 128 kB as maximum IO size). However, this approach has two dis-
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advantages. First, it greatly increases the number of disk IOs9 in the scheduling

queue, which might complicate the implementation of sophisticated QoS-aware

schedulers and increase their computational requirements. Second, the sched-

ulers rarely account for the overhead of disrupting sequential disk access, since

they do not actually preempt the low-level disk IOs.

In this chapter, we present a scheduler that uses an explicitly preemptible

approach, which does not need to bound maximum size for low-level disk IOs

(for example, a single 8 MB IO does not need to be split into eighty 128 kB low-

level disk IOs). The scheduler explicitly considers the overhead of disrupting

sequential accesses and whenever it chooses to preempt the ongoing IO, the

expected waiting time is substantially shorter than in the case of traditional

non-preemptible IOs [22].

The single-disk scheduler maintains a queue of all internal IOs for a partic-

ular disk. The components of the internal IO response time are waiting time

and service time. The waiting time is the amount of time that the request

spends in the scheduling queue. The service time is the time required by the

disk to complete the scheduled request, consisting of access latency (seek time

and rotational delay) and data transfer time.

Internal scheduling values: The completion of an internal IO yields some

QoS value for the RAID system. However, it is hard to estimate this value. First,

external QoS value is generated only after the completion of the last internal IO

due for a parent external IO. Second, when performing write-back operations

for buffered write IOs, their external QoS value has already been harvested.

However, not servicing these internal IOs implies that servicing future write

IOs will suffer when the write buffer gets filled up. Third, internally generated

IOs (for example, due to the RAID reconfiguration manager) must be serviced

although their completion does not yield any immediate external QoS value.

9The number of low-level IOs for each application-generated IO might be one or two orders
of magnitude greater for systems that bound the maximum IO size.
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Although we do not always know the QoS value generated due to the com-

pletion of an internal read IO, we can estimate it using the following approach.

When the scheduler decides to schedule an internal IO, it predicts the service

time for the IO (Tservice).
10 Let yext(t) be the value function for the parent

IO, as defined in Equation 5.1. Let sizeint denote the size of the internal IO,

and sizeremain denote the remaining size of the parent IO. We estimate the

scheduling value for the internal read IO (yint read) using the following heuristic:

yint read = yext(t+ Tservice)× sizeint
sizeremain

. (5.2)

The reasoning behind Equation 5.2 is to give more scheduling value (and

hence higher priority) to internal IOs for soon-to-complete external IOs. This

is necessary since we do not gain any external value from servicing internal IOs

until we service the whole parent external IO. Servicing a small internal IO for

a large external IO should have low priority. However, servicing a small internal

IO as the last fragment for a large, nearly-completed external IO should have

high priority. This is achieved by giving more internal yields for IOs whose

sizeremain diminishes faster.11

Figure 5.9 depicts the dynamic nature of the scheduling value for internal

write IOs. Unlike internal read IOs, the scheduling value of internal write IOs

does not depend directly on the value of the corresponding external IOs. The

idea is to drain a nearly-full write buffer at a faster rate, and to drain a nearly-

empty write buffer at a slower rate. Additionally, if the buffer is full, we need

to increase the draining rate depending on the value of pending IO requests.

Whenever the RAID system services a new external write IO, the non-volatile

write buffer space decreases, and performing write-back operations gain more

10Performing this prediction does not incur additional overhead since it is already required
by Semi-preemptible IO [22].

11This is just one of several possible heuristics to address the problem. More detailed study
in this regard is part of our future work.
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importance. Hence, we increase the scheduling value for write IOs. Whenever

the last internal write IO for a particular external IO completes, its data is

flushed from the non-volatile buffer, making more space available. This reduces

the importance of write-back operations, and thereby decreases the scheduling

value for internal write IOs.

available
More write buffer

Less write buffer
available

v

time

int_wr

Figure 5.9: Scheduling value for internal write IOs.

In estimating the scheduling value for internal write IOs, we need to consider

both the available non-volatile buffer space and all the pending external write

IOs when the buffer is full. Let Iwr(space) denote the value of freeing space in the

non-volatile buffer (it is a function of the buffer utilization). Let ywriext (t) denote

the value of the ith external write IO waiting to be buffered. Let sizeremain wr

denote the remaining size of all of the internal IO’s siblings that need to be

completed to flush parent data from the non-volatile buffer. We use the following

heuristic to estimate the scheduling value of internal write IOs:

yint wr =
(sizeint)

2

sizeremain wr
× (Iwr(space) +Max{ywriext (t)}) . (5.3)

Iwr(space) should assign a low value to write IOs when the buffer is nearly

empty, giving higher priority to read IOs. When the buffer is nearly full,

Iwr(space) should give high value to write IOs, giving higher priority to write-

back operations. We use the maximum value of all pending external write IOs

to further increase the priority of internal write IOs when the non-volatile buffer
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is full. The design and implementation of a good Iwr function is application spe-

cific, and it is critical for gracefully servicing both read and write IOs. As in

the read case, we give more value to large IOs and the soon-to-complete IOs

(which is the reason for (sizeint)
2 factor).

Scheduling: Scheduling IOs whose service yields various values and incurs

differing kinds of overhead is a hard problem. In this dissertation we do not

intend to ascertain which scheduling method is the best. We use a simple greedy

approach which chooses the IO with the maximum predicted average yield to

schedule next. We define the average yield of an IO (yavg) as

yavg =
yint {read/wr}
Tservice

. (5.4)

Thus, the average yield takes into consideration the predicted time required

to service the internal IO (including its access delay and transfer time). Equa-

tions 5.2 and 5.3 estimate the value of internal IOs. The single-disk scheduler

selects the internal IO with currently highest average yield, with the goal of

maximizing the sum of all external yields. If more than one IO has the same

yavg, then we choose the one with the shortest deadline to break the tie.

Figure 5.10 depicts the average yield (solid line) for two internal IOs serviced

by the same disk. The dotted line denotes the yield for the same IOs when dis-

tributed over the useful data transfer periods latency. When the scheduler must

choose an IO to service next from the queue, it services the IO with the maxi-

mum average yield. Our initial design goal was to have the scheduler effectively

mimic the behaviour of frequently used disk schedulers like the shortest-access-

time-first (SATF) scheduler [45] (when preemptions do not happen).

Preemptions: We now present two preemption approaches conservative pre-

emption and aggressive preemption that aim to optimize for the long-term and

the short-term respectively.

Whenever a new IO arrives, the scheduler checks whether preempting the
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Figure 5.10: Average yield.

ongoing IO (using the preemption methods introduced in Section 5.2), servicing

the new IO, and immediately resuming the preempted IO, offers a better average

yield than would be obtained without preemption. To calculate the average yield

in either case, we must consider the yields due to both IOs. Let the ongoing

IO be denoted as IO1 and the newly arrived IO as IO2. Let T 1
service−remain

denote the time required to service the remaining portion of IO1 irrespective of

whether it is preempted or not.12 In either case, we use the following formulation

to calculate the average yield due to both IOs:

yavg =
y1
int + y2

int

T 1
service−remain + T 2

service

. (5.5)

Notice that although we consider only the remaining time left to service the

ongoing IO, we still include its entire yield, as opposed to including only the

yield corresponding to the remaining portion of the IO. Indeed, the ongoing IO

yields any value only if it is serviced entirely.

Conservative Preemption: The conservative approach makes a decision

based on a long-term optimization criterion. Only if the preemption of the on-

going IO yields an overall average yield in the long term (given by Equation 5.5)

12The value of T 1
service−remain will be different depending on which case gets instantiated.

It will include preemption overhead in case the IO is preempted.
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which is greater than the no preemption case, the ongoing IO is preempted. Fig-

ure 5.11 depicts the case when even though the newly arrived IO (IO2) offers

a greater average yield than that of the remaining portion of the ongoing IO

(IO1), the conservative approach chooses not to preempt the ongoing IO. By

not preempting the ongoing IO, an overall greater yield is obtained after both

IOs have been serviced.

IO1
IO2

IO2

y
avg

IO1

Average yield due to the
remaining portion of

arrives

time

Figure 5.11: Conservative preemption.

Aggressive Preemption: Although the current IO offers a lesser average yield

than the newly arrived IO, the conservative approach might conceivably choose

not to preempt it. This happens because the conservative approach considers

the overall average yield for servicing both IOs before making a decision, taking

into consideration the preemption overhead. When the preemption overhead is

considered within the framework of Equation 5.5, by not preempting the current

IO (and thus eliminating preemption overhead) we obtain an overall better yield

on the completion of the two IOs.

However, it is also conceivable that additional IO requests arrive in this

period with higher priority than the ongoing IO. In this case, the best schedule

might be simply to service all the higher priority IOs in the queue before finally

servicing the ongoing IO. The aggressive preemption approach preempts the

ongoing IO as soon as another IO with a higher average yield arrives. Figure 5.12
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Figure 5.12: Aggressive preemption.

depicts the case when the aggressive approach preempts the ongoing IO in a

greedy manner to immediately increase the average yield.

Finally, to support cascading preemptions (preempting an IO which already

caused the preemption of another IO), we simply return the preempted IO to

the scheduling queue. According to Equation 5.4, the predicted average yield

increases for the remaining portions of preempted IOs (because parts of their

data have already been transfered). This is necessary in order to maintain the

feasibility of the greedy approach — actual QoS value is generated only after

the whole IO completes. Hence, we have to control the number of preemptions.

Our approach also prevents thrashing due to cascading preemptions. Cascading

preemptions occur only when the average yield for all IOs in the cascade is

maximum.13

5.4 Experimental Evaluation

In this study we have relied on simulation to validate our preemptive schedul-

ing methods. Semi-preemptible IO [22] shows that it is feasible to implement

13Since we use a greedy approach, starvation is possible. To handle starvation, we can add
a simple modification to our internal scheduling value, forcing it to increase with time.
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preemption methods necessary for preemptive RAID scheduling outside of disk

firmware. In this study we used the previous work in disk modeling and pro-

filing [22, 33, 52] to build an accurate simulator for preemptible RAID systems

(PraidSim). We evaluate the PRAID system using several micro-benchmarks

and for two simulated real-time streaming applications.

5.4.1 Methodology

We use PraidSim to evaluate preemptive RAID scheduling algorithms. PraidSim

is implemented in C++ and uses Disksim [33] to simulate disk accesses. We

do not use the RAID simulator implemented in Disksim, but write our own

simulator for QoS-aware RAID systems based on the architecture presented in

Section 5.3. PraidSim can either execute a simulated workload for external IOs

or perform a trace-driven simulation. We have chosen to simulate only the

chunking and JIT-seek methods from Semi-preemptible IO. The seek-splitting

method only helps in reducing the maximum IO waiting time and adds notice-

able overhead. The chunking method relies only on optimal chunk size for a

particular disk, which is easy to profile for both IDE and SCSI disks [22]. JIT-

seek, which has been previously implemented in several schedulers [22, 52], is

used here for JIT-preemption.

Table 5.3 summarizes the configurable parameters in PraidSim. The internal

RAID configuration is chosen by specifying the RAID level, number of disks in

the array, number of mirror replicas, stripe size, and the name of the simulated

disk for Disksim. For the experiments in this chapter we used the Quantum

Atlas 10K disk model. The IO arrival rate is specified with the arrival rate and

random distribution for write IOs, deadline read IOs, and interactive read IOs;

or by specifying a trace file. The next set of parameters is used to specify the

PraidSim scheduling algorithm for non-interactive read and write IOs, the pre-

emption decisions, methods for scheduling interactive reads, and the dynamic
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Parameter name Description

RAID level RAID 0, RAID 0/1, or RAID 5
Number of disks Number of disks in the disk array
Mirrors Number of mirror disks
Disksim model Name of the parameter file for Disksim disks
Striping unit Size of the striping unit in disk blocks (512 B)
Write IOs Write IO arrival rate and random distribution
Read IOs Read IO deadlines, arrival rate and rand. dist.
Interactive IOs Interactive IO arrival rate and rand. dist.
Scheduling SCAN or FIFO for each IO class
Preemption Preempt writes, reads, or no preemption
Interactivity Preemption criteria for interactive IOs
Write priority Buffer size and dynamic QoS value for writes
Chunk size Chunk size for Semi-preemptible IO

Table 5.3: Summary of PraidSim parameters.

value for internal write IOs. The chunk size parameter specifies the chunk size

used to schedule semi-preemptible IOs. For all experiments in this chapter we

used a chunk size of 20 kB. We varied the simulated workloads to cover a large

parameter space and then performed experiments using parameters that approx-

imate the behavior of interactive video streaming applications (write-intensive

video surveillance and read-intensive interactive video streaming applications).
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5.4.2 Micro-benchmarks

Our micro-benchmarks aimed to answer the following questions:

• Does preempting non-interactive IOs always improve the quality of service?

• How does preemption help when interactive operations consist of several

IOs in a cascade?

• What is the overhead of preempting and delaying write IOs to promptly

service read requests?

Preemption Decisions

In order to show that decisions about preempting sequential disk accesses

are not trivial for all applications, we performed the following experiment. We

varied the size of non-interactive IOs and measured both the response time

for interactive IOs and the throughput for non-interactive IOs. We fixed the

arrival rate for interactive IOs to 10 req/s, and kept the disk fully utilized with

non-interactive IOs. The size of the interactive requests was 100 kB.

Figure 5.13 depicts the average response time for interactive IOs for preempt-

never and preempt-always approaches. For small IO sizes the benefit of preemp-

tion is of the order of 5 − 10 ms. However, for large non-interactive sequential

IOs, the preemption yields improvements of the order of 100 ms. The pre-

emptive approach also provides less variation in response times, which is very

important for interactive systems. Figure 5.14 shows the difference in through-

put between the preempt-never and preempt-always approaches. The main

question is whether the trade-off between improved response time and reduced

throughput yields better quality of service.

Figure 5.15 depicts the improvements in aggregate interactive value (for

all external interactive IOs) of the preempt-always over the preempt-never ap-

proach. We use a yield function for interactive real-time IOs from Figure 5.8(a)
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Figure 5.13: Average response time for interactive IOs vs. non-interactive IO
size.
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Figure 5.14: Disk throughput vs. non-interactive IO size.
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in Section 5.3.2. If non-interactive IOs are small, the preempt-always approach

does not offer any improvement, since all interactive IOs can be serviced be-

fore their deadlines even without preemptions. For large sizes of non-interactive

IOs and short (100 ms) deadlines, preempt-always yielded up to 2.8 times the

value of the non-preemptive approach (180% improvement). For applications

with shorter deadlines the improvements are substantially higher. However,

even for large non-interactive IOs, if the deadlines are of the order of 200 ms,

then the preempt-always approach makes only marginal improvements over the

preempt-never approach.
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Figure 5.15: Improvements in aggregate interactive value.

Figure 5.16 shows the difference between the aggregate values for all ser-

viced IOs for the preempt-always and the preempt-never approaches. For the

case when the non-interactive requests yield the same as or greater value than

the interactive IOs, the preempt-always approach degrades the aggregate value

when a disk services small non-interactive IOs (up to approximately 2 MB in

Figure 5.16). For cases when interactive requests are substantially more impor-

tant than the non-interactive ones, the difference in aggregate value for all IOs

converges to the curve presented in Figure 5.15. Simple priority-based schedul-

ing cannot easily handle both cases.
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Figure 5.16: Differences in aggregate values for all IOs between the preempt-
always and preempt-never approaches: (a) non-interactive and interactive IOs
are equally important and (b) non-interactive IOs are more important (their
value is five times greater).

Response Time for Cascading IOs

Interactive operations often require multiple IOs for their completion. For

example, a video-on-demand system has to first fetch meta-data containing

information about the position of a requested frame in a file. For large systems,

meta-data cannot always reside in the memory cache, and requires an additional

disk IO. Another example is a video surveillance system that supports complex

interactive queries with data dependences [30, 70].

In order to show how preemptions help when an interactive operation con-

sists of issuing multiple IO requests in a cascade, we performed the following

experiment. The background, non-interactive workload consists of both read

and write IOs (external), each being 2 MB long. We use the RAID 0/1 con-

figuration with 8 disks. The sizes of internal IOs are between 0 and 2 MB and

the interactive IOs are 100 kB each. As soon as one interactive IO completes,
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we issue the next IO in the cascade, measuring the time required to complete

all cascading IOs. Figure 5.17 depicts the effect of cascading interactive IOs on

the average response time for the whole operation. If the maximum acceptable

response time for interactive operations is around 100 ms, the preemptive ap-

proach can service six cascading IOs, whereas the non-preemptive approach can

service only two.
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Figure 5.17: Response time for cascading interactive IOs.

Overhead of Delaying Write IOs

In order to show the overhead of preempting and delaying write IOs, we per-

formed the following experiment. We varied the arrival rate for read requests

and plotted the overhead in terms of increased buffering requirements and re-

duced idle time. We compared the following three scheduling policies: (1) SCAN

scheduling without priorities, (2) SCAN scheduling with priorities for reads but

without preemptions, and (3) SCAN scheduling with write preemptions.

Figure 5.18 depicts the RAID write-buffer requirements for different read

arrival rates. In this case, we used RAID level 0/1, 4+4 disks, each external
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Figure 5.18: RAID write-buffer requirements.

read IO was 1 MB, and the external write rate was 50 MB/s (100 MB/s inter-

nally). Results show that independent of the scheduling criteria, whenever the

available disk idle time is small, the required buffer size increases exponentially.

The additional write-buffer requirement is acceptable for a range of read arrival

rates in the system with preemptions. A real system must control the number

of preemptions as well as the read/write priorities depending on available RAID

idle time. Figure 5.19 depicts the average disk idle-time for different read ar-

rival rates. The results showed that for arrival rates of up to around 10 req/s,

preemption only marginally increases the write-buffer requirement and reduces

the RAID idle-time, with noticeable improvements in interactive performance.

5.4.3 Write-intensive Real-time Applications

In this section we discuss the benefits of using preemptive RAID schedul-

ing for write-intensive real-time streaming applications. We generated a work-

load similar to that of a video surveillance system that services read and write

streams with real-time deadlines. In addition to IOs for real-time streams, we
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Figure 5.19: Average RAID idle-time.

also generate interactive read IOs. We present results for a typical RAID 0/1

(4+4 disks) configuration with a real-time write-rate of 50 MB/s (internally 100

MB/s) and a real-time read rate of 10 MB/s. The arrival rate for interactive

IOs is 10 req/s. The external non-interactive IOs are 2 MB each, and interactive

IOs are 1 MB each. The workload corresponds to a video surveillance system

with 50 DVD-quality write video streams, 20 real-time read streams, and 10

interactive operations performed each second.

Figure 5.20 depicts the improvements in the response times for interactive

IOs and the overhead in reduced RAID idle time. The system was able to

satisfy all real-time streaming requirements in all three cases. Using the JIT-

preemption method, our system decreased the interactive response time from

110 ms to 60 ms, by reducing RAID idle-time from 7.2% to 6.5%. The read-

splitting method from Section 5.3.2 further decreased the response time (by

reducing the data-transfer component on a single disk) with the substantially

larger effect on reduced average disk idle time.
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Figure 5.20: Average interactive read response times.

5.4.4 Read-intensive Applications

Figure 5.21 depicts the average response times for interactive read requests

for read-intensive real-time streaming applications. The setup is the same as for

write-intensive applications in the previous section, but the system services only

read IOs. The streaming rate for non-interactive reads is 129 MB/s. The inter-

active IOs are 1 MB each, and their arrival rate is 10 req/s. The improvements in

average response times were similar to those in our write-intensive experiment.

The JIT-preemption with migration didn’t substantially improve the average

response for interactive IOs, but the better load-balancing compensated for the

reduction in idle time due to JIT-preemption.

5.4.5 Summary of Results

First, we found that it is not always desirable to preempt non-interactive

IOs. The decision depends on the application and the relative importance of user

requests. Whenever we preempt nearly-completed IOs, we introduce additional
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Figure 5.21: Average interactive read response times.

seek overhead without obtaining any additional value for servicing interactive

IOs faster.

Second, we discovered that preemption can lead to substantial QoS im-

provements for interactive IOs consisting of several cascading IOs where each

subsequent IO request depends on the completition of the previous one. Our

system was able to service six cascading IOs in less than 100 ms, compared

to only two in the case of the non-preemptible approach. This is important

for large-scale commercial systems servicing interactive users [35] and emerging

video surveillance systems [30, 70].

Third, we discovered that the increased write-buffer requirements and re-

duced disk idle-time are acceptable for a range of interactive and non-interactive

streaming rates. We performed experiments on the range of read- and write-

intensive streaming workloads (simulating typical video streaming systems). In

summary, a preemptible system can reduce the interactive response time by

nearly half (for example, from 110 ms to 60 ms) while reducing disk idle-time
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by only 0.7 % (for the same size of write buffer).

5.5 Summary

In this chapter we have investigated the effectiveness of IO preemptions to

provide better disk scheduling for RAID-based storage systems. We first intro-

duced methods for preemptions and resumptions of disk IOs — JIT-preemption

and JIT-migration. We then proposed an architecture for QoS-aware RAID

systems and a framework for preemptive RAID scheduling. We implemented a

simulator for such systems (PraidSim). Using the simulator, we evaluated bene-

fits and estimated the overhead associated with preemptive scheduling decisions.

Our evaluation showed that using IO preemptions can lead to a better overall

system QoS for applications with large sequential accesses and interactive user

requests.

We plan to further this work in the following two directions. First, based on

the existing Linux QoS extensions, we plan to implement a preemptive sched-

uler for software RAIDs. Second, we plan to investigate the effectiveness of

preemptive scheduling in cluster-based storage systems.
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Chapter 6

Related Work

In this chapter, we survey the representative work on disk management. We

first survey related work in disk profiling, followed by previous work related to

preemptible disk access and the implementation of Semi-preemptible IO. Finally,

we survey related work relevant to preemptive RAID scheduling.

6.1 Disk Modeling and Profiling

Several previous studies have focused on the problem of disk feature ex-

traction. Worthington, Ganger, et al. [76, 101] extract disk features in order

to model disk drives accurately. Both studies rely on interrogative SCSI com-

mands to extract LBA-to-PBA mapping from the disk. Patterson et al. [91]

present several methods for empirical feature extraction, including an approx-

imate mapping extraction method. Aboutabl et al. [1] propose methods for

obtaining detailed temporal characteristics of disk drives, including methods

for predicting rotational delay.

Scheduling algorithms in [42, 45, 53, 102] assume the ability to predict the

rotational delay between successive requests to the disk. Lumb et al. [52] im-

plemented their scheduler outside of disk firmware relying on their disk profiler.

145



Our study includes both interrogative and empirical methods for the accurate

extraction of disk mapping information. Empirical methods can be used for

disks that do not support interrogative commands in order to extract disk map-

ping information. Using empirical extraction, we can obtain accurate disk map-

ping information, including precise positions of track and cylinder boundaries.

However, empirical methods are slower than interrogative ones. To predict ro-

tational delay between disk IOs, Diskbench [28] uses an approach that is similar

to the approach presented in [1]. Methods in [1] are continuously keeping track

of the disk head position. We concentrate on predicting rotational distance

between two LBAs and do not require knowledge of the head position, as ex-

plained in Section 3.3.2 and Section 3.4.9. Such prediction capability can be

used for scheduling requests in real systems, where requests are known to arrive

in a bursty fashion [73]. Diskbench can extract all the disk features that are

required in order to predict disk access times with high accuracy (we have used

the predictions to implement Semi-preemptible IO [20, 22]).

6.2 Preemptible Disk Access

Before the pioneering work of Daigle and Strosnider [18], Molano et al. [59],

and Thomasian [94], it was assumed that the nature of disk IOs was inherently

non-preemptible. Daigle and Strosnide [18] proposed breaking up a large IO into

multiple smaller chunks to reduce the data transfer component of the waiting

time for higher-priority requests. They proposed a minimum chunk size of one

disk track. In this dissertation, we improve upon the conceptual model of [18]

in three respects: 1) in addition to enabling preemption of the data transfer

component, we show how to enable preemption of Trot and Tseek components; 2)

we improve upon the bounds for zero-overhead preemptibility; and 3) we show

that making write IOs preemptible is not as straightforward as it is for read

IOs, but we propose one possible solution.
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Semi-preemptible IO [22] uses a just-in-time seek (JIT-seek) technique to

make the rotational delay preemptible. JIT-seek can also be used to mask the

rotational delay with useful data prefetching. In order to implement both meth-

ods, our system relies on accurate disk profiling [1, 25, 76, 91, 101]. Rotational

delay masking has been proposed in multiple forms. Chiueh et al. [42] and

Worthington et al. [102] present rotational-latency-sensitive schedulers, which

consider the rotational position of the disk arm to make better scheduling deci-

sions. Ganger et al. [52, 53, 71] presented freeblock scheduling, wherein the disk

arm services background jobs using the rotational delay between foreground

jobs. Seagate uses a variant of just-in-time seek [80] in some of its disk drives

to reduce power consumption and noise. Semi-preemptible IO uses similar tech-

niques for a different goal — to make rotational delays preemptible.

There is a large body of literature proposing IO scheduling policies for mul-

timedia and real-time systems that improve disk response time [9, 82, 84, 92].

Semi-preemptible IO is orthogonal to these contributions. We believe that the

existing methods can benefit from using preemptible IO to improve schedulabil-

ity and further decrease response time for higher-priority requests. For instance,

to model real-time disk IOs, one can draw from real-time CPU scheduling the-

ory. Molano et al. [59] adapt the Earliest Deadline First (EDF) algorithm from

CPU scheduling to disk IO scheduling. Since EDF is a preemptive scheduling

algorithm, a higher-priority request must be able to preempt a lower-priority re-

quest. However, an ongoing disk request cannot be preempted instantaneously.

Applying such classical real-time CPU scheduling theory is simplified if the

preemption granularity is independent of system variables like IO sizes. Semi-

preemptible IO provides such an ability. However, further study is necessary to

address a non-linear preemption overhead occuring in preemptible disk schedul-

ing (we present two possible greedy preemptive scheduling approaches in Chap-

ter 5.3).
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6.3 Preemptive RAID Scheduling

In the late eighties, the emerging market for personal computers changed the

basic model for building high-performance commercial storage systems. The re-

dundant arrays of inexpensive disks (RAID) provided better price-performance

ratio over specialized disks [13, 15, 60]. After the initial single-server RAID

systems, the next step was to provide an interface for direct-disk access over

the network [31, 37]. RAID systems provide logical-disk abstraction on which

a standard file-system stores data. After the introduction of cluster-based

computing models [3], totally distributed cluster-based file-systems are intro-

duced [2, 54, 55, 56]. Motivated by emerging multimedia applications, several

authors investigated streaming support for these systems [96, 41].

Preemptive RAID scheduling is based on detailed knowledge of low-level

disk characteristics [28, 76, 101]. A number of scheduling approaches rely on

these low-level characteristics [22, 44, 52, 63]. RAID storage was the focus of a

number of important studies including [15, 31, 75, 94, 96, 100]. John Wilkes et

al. [98, 99] stressed the importance of providing quality-of-service scheduling in

storage systems.

While it is the case that most current commodity operating systems do not

provide sufficient support for real-time applications, several research projects

are committed to implementing real-time QoS support for open-source com-

modity operating systems [59, 85, 90]. Molano et al. [59] presented their de-

sign and implementation of a real-time file system for RT-Mach (which is a

microkernel-based real-time operating system from CMU). Shenoy et al. [85]

and Sundaram et al. [90] presented their QoS extensions for the Linux operat-

ing system (QLinux). Our goals are similar to QLinux since we want to add

QoS support for Linux disk access. However, in this dissertation we investigated

an approach with minimal changes in Linux kernel space, which is sufficient for

an efficient implementation of QoS disk scheduling.
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Multimedia real-time systems were the focus of several relevant survey and

trend studies [34, 36, 62, 89]. Plagemann et al. [62] survey related work in

operating system architectures, CPU scheduling, disk management, memory

management, and low-level bus, cache, and device management. Gemmell et

al. [34] concentrate on disk file systems and scheduling for continuous media

applications. In this dissertation, we also focus on disk QoS management, but

we are interested in heterogenous media applications, which manage interactive,

continuous, and best-effort data. We use the explicitly preemptive approach to

improve QoS disk scheduling.
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Chapter 7

Concluding Remarks

In this chapter, we first present a brief summary of the dissertation. We then

discuss the impact of the proposed techniques, particularly Semi-preemptible IO

and preemptive RAID scheduling. Finally, we make concluding remarks and

suggest directions for future work.

7.1 Dissertation Summary

With the emergence of ubiquitous computing, we have witnessed an in-

creased number of data-intensive real-time applications. For example, video

surveillance, environmental monitoring, sensor networks, digital libraries, and

large scientific setups often generate multiple gigabyte- or terabyte-per-day of

real-time data that requires efficient, reliable storage and processing. Currently,

the most cost-effective technology for non-volatile storage is based on magnetic

disks.

First, we present an open-source low-level disk profiling tool (Diskbench).

Diskbench extracts necessary features for realistic disk modeling and accurate

performance predictions, which are required for real-time disk schedulers. We

consider the following low-level disk features: rotational time, mapping from
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logical to physical block addresses, track boundaries, disk-zone information, and

buffer parameters. We also consider high-level disk features including optimal

chunk-size ranges (for both sequential reads and writes) and admission control

curves for guaranteed-rate disk schedulers.

Second, we investigate preemptibility of disk IO requests and propose a

class of preemptible disk scheduling algorithms. Previously, researchers were

considering the scheduling of non-preemptible disk IOs. Thinking of disk IOs

as preemptible IOs enables real-time schedulers to separate access latency from

IO size. Hence, schedulers can operate with large IO requests and still provide

short, guaranteed response times. We present the design and implementation of

Semi-preemptible IO [22] prototype, which shows significant improvements over

traditional, non-preemptible disk IOs. Essentially, Semi-preemptible IO maps

each IO request into multiple fast-executing (and hence short-duration) disk

commands using three methods. (The ongoing IO request can be preempted

between these disk commands.) Each of these three methods addresses the

reduction of one of the following IO components: Ttransfer (denoting transfer

time), Trot (denoting rotational delay), and Tseek (denoting seek time).

• Chunking Ttransfer. A large IO transfer is divided into a number of small

chunk transfers, and preemption is made possible between the small trans-

fers. If the IO is not preempted between the chunk transfers, chunking

does not incur any overhead. This is due to the prefetching mechanism in

current disk drives.

• Preempting Trot. By performing just-in-time (JIT) seek for servicing an

IO request, the rotational delay at the destination track is virtually elim-

inated. The pre-seek slack time thus obtained is preemptible. This slack

can also be used to perform prefetching for the ongoing IO request, and/or

to perform seek splitting.

151



• Splitting Tseek. Semi-preemptible IO splits a long seek into sub-seeks, and

permits preemption between two sub-seeks.

Using both synthetic and trace workloads, we have shown that these tech-

niques can be efficiently implemented, given detailed disk parameters. Our em-

pirical studies showed that Semi-preemptible IO can reduce the waiting time for

both read and write requests significantly when compared with non-preemptible

IOs.

Third, we investigate the effectiveness of preemptive disk-scheduling algo-

rithms to achieve better QoS. We present an architecture for QoS-aware RAID

systems based on Semi-preemptible IO [22]. We show when and how to preempt

IOs to improve the overall QoS of the RAID. In order to decide when to preempt

an IO, we propose preemptive scheduling methods which aim to maximize the

total RAID QoS value. In order to decide how to preempt an IO, we introduced

two mechanisms for IO preemptions in RAID systems — JIT-preemption and

JIT-migration. We evaluated the benefits and estimated the overhead of the

proposed approach using our simulator for preemptible RAID systems.

7.2 Impact

Preemptive CPU scheduling is a norm in the design of real-time systems.

We feel that disk schedulers for data-intensive real-time applications can benefit

from experience in the area of preemptive CPU scheduling. This dissertation

presents the framework for implementing preemptive disk schedulers. Using

the semi-preemptible IO abstraction, real-time disk schedulers can take the

explicitly preemptive aproach and make intelligent decisions whether to preempt

their sequential disk accesses or not.
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7.3 Future Directions

This work can be extended in many ways. We list just the following three

directions.

• Most current disk schedulers assume that disk IOs are non-preemptible.

Based on the preemptible framework presented in this dissertation, ad-

ditional work is needed to design preemptive disk schedulers for various

real-time applications. The main difficulty in employing existing preemp-

tive CPU schedulers is two-fold. First, preemption overhead is non-linear.

Nevertheless, we can still accurately estimate the preemption overhead us-

ing disk profiling. Existing preemptive CPU schedulers are not designed to

consider this predictable, but complex, preemption overhead. Second, op-

timal preemption cannot be done at any point, but only at well defined,

JIT-preemption points. Furthermore, these points differ depending on

the position of the next-to-be-scheduled IO. Preemptive schedulers need

to take into account both of these issues.

• Most current operating systems do not implement sophisticated QoS disk

scheduling. Preemptive disk schedulers can be employed to improve the

QoS support for commodity operating systems, especially for open-source

software RAID implementations.

• Several large storage-bound applications implement their storage as cluster-

based software RAID on top of unreliable commodity hardware. The

Google File System [35] is an example of such a system. The preemptive

disk scheduling approach might help in providing better QoS scheduling

for these cluster-based storage systems.
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