
 IEEE TCCA Newsletters, 1999. 1

Split Temporal/Spatial Cache:
A Survey and Reevaluation of Performance

0LORã 3UYXORYLü
� 'DUNR 0DULQRY

� =RUDQ 'LPLWULMHYLü� 9HOMNR 0LOXWLQRYLü

Department of Computer Engineering
School of Electrical Engineering

University of Belgrade
P.O BOX 35-54

11120 Belgrade, Serbia, Yugoslavia

*From August 98, at the University of Illinois at Urbana-Champaign
**From August 98, at the Massachusetts Institute of Technology

prvul@computer.org, darko@mit.edu, zorand@galeb.etf.bg.ac.yu, vm@etf.bg.ac.yu

Abstract
The purpose of this paper is to reevaluate the
performance of the Split Temporal/Spatial (STS)
cache. First we briefly survey the split cache designs
found in the open literature. Then we propose
quantitative definitions for both temporal and spatial
locality. These definitions can be used to represent
each split cache design (or any other method for
optimized locality exploitation) as a line in a
temporal-spatial locality plane. Then we explain the
particular process used to evaluate the STS cache
design, and finally we present the results of that
evaluation. We conclude with possible improvements
pointed to by our evaluation results.

Introduction
In recent years, the speed gap between dynamic
memories and microprocessors has been steadily
increasing. For this reason, a lot of effort is invested
into finding ways to reduce or hide memory latency.
One of the oldest and most powerful ways of reducing
the memory latency is through use of cache memories.

Caches exploit the locality of data access. A small (but
fast) memory is able to satisfy most memory access
requests issued by the processor, so in most cases
there is no need to wait for slow (but large) main
memory to respond. Conventional cache designs non-
selectively cache all data. If the memory request is not
satisfied from the cache, the main memory response
has to be waited for. However, at the same time
memory contents are brought into the cache in hope
that future processor accesses will reuse this data.

The property that the same data items tend to be
accessed again in the near future is called temporal
locality. Temporal locality is exploited by using
smaller block sizes and a cache hierarchy.

Neighboring data items tend to be accessed in the near
future, so spatial locality also exists. Spatial locality is
exploited by bringing in an entire cache block (with
several data words in it).

It is known that not all data exhibit both types of
locality, and some data exhibit no locality at all. For
example, clearing a large vector involves spatial
locality only, because each data item is accessed only
once. Frequent accesses to a single global counter are
in most cases temporal only, because neighboring data
items are often not used so heavily. Most accesses to
large hash tables exhibit neither type of locality. If a
data item exhibits no temporal locality, bringing it
into the cache is useless. If no spatial locality is
exhibited by a data item, bringing an entire cache
block is even more wasteful.

Several ways to detect differing localities and exploit
each in a manner suited to that particular locality type
are found in the open literature. Here we will
concentrate on an increasingly popular way of
exploiting different data localities – splitting the
cache into several subcaches, with each subcache
designed with a particular type of locality in mind.
First, we will survey the existing split cache designs.
Then we will provide quantitative definitions for both
locality types. Finally, we will provide a way to
represent each solution as a line in the temporal-
spatial locality plane.

A survey
Exploitation of temporal locality
Much work has been done in exploiting the differing
temporal locality of the data accesses, using cache
bypassing [Tyson95], [Johnson97a]. The main idea is
not to cache non-temporal data. In this way, the entire
cache capacity is dedicated to caching the data will be
reused.

Chronologically: Paper #1

 IEEE TCCA Newsletters, 1999. 2

However, non-temporal data can still exhibit a high
degree of spatial locality, so it is useful to cache the
corresponding block for some time. Besides, if some
data is wrongly presumed as being non-temporal,
caching it in a small buffer reduces the penalty of
such mistake. For both of these reasons, a small buffer
is often added that caches such non-temporal data.
The result is a cache split according to the temporal
locality, consisting of a larger temporal subcache
(main cache) and a smaller non-temporal subcache
(buffer).

The assist cache [Chan96] is incorporated into the HP
PA7200 CPU. The first level cache consists of a large,
external, direct-mapped main cache and a smaller,
on-chip, fully associative assist cache. Besides
reducing conflicts in the main cache, the assist cache
also serves as a “non-temporal” subcache, while the
main cache serves as a “temporal cache.” At compile
time, some memory access instructions are marked as
“spatial locality only.” Data accessed by these
instructions are not cached in the main cache, but
only in the assist cache. Other data items are
considered as having both temporal and spatial
locality and can be cached by the main cache.

The non-temporal streaming (NTS) cache [Rivers96]
is similar to the assist cache. The cache is split into a
larger, direct-mapped, temporal subcache, and a
smaller, fully associative, non-temporal subcache. The
decision which subcache should be used is done at
runtime. Each entry in temporal subcache is
associated with a bit-vector containing one bit for
each word used. If no reuse is detected while a
particular cache block was in the temporal subcache,
it is marked as non-temporal (on eviction from
temporal subcache). Future accesses to this memory
block would cause a fetch into a non-temporal
subcache. If reuse is detected in a non-temporal
subcache, the appropriate block is marked back to
temporal.

Exploitation of spatial locality
Spatial locality of data accesses has traditionally been
exploited by “sequential” prefetching techniques and
sectored caches. “Sequential” prefetching techniques,
such as “always,” “tagged,” “miss,” and “bi-
directional” [Tse98], all prefetch blocks that are
neighbors to the block being currently accessed. In
this way, prefetching utilizes spatial locality that
across cache block boundaries. Unfortunately, as was
found in [Tse98], these prefetching techniques
increase the bus traffic, make cache tag and data ports
busy and introduce pollution into the cache.

Sectored caches exploit the fact that in many cases
there is not enough spatial locality to justify bringing
the entire block into the cache.

Each cache block is therefore divided into several
(usually two or four) subblocks that share the common
tag, but each has its own validity bit. When a non-
spatial access occurs, only one of the subblocks is
brought into the cache, therefore reducing bus traffic.
However, this approach still wastes cache space in
non-spatial blocks, since the unused subblocks can not
be used to cache other data.

An interesting approach that avoids this waste of
cache space is presented in [Johnson97b]. In this
design, the entire cache contains single-word blocks,
but for data that are detected as being spatial, several
blocks (corresponding to one larger block in split
designs) are fetched. In effect, several consecutive
blocks containing spatial data behave as if they
together form one larger cache block. The main
drawback of this approach is that it involves increased
tag overhead (more tags for a cache of equal capacity)
over the conventional cache, although most of the
cache blocks are used by the spatial data.

A multi-word cache block is a waste of cache space if
the cached data does not exhibit spatial locality, while
a single-word cache block introduces unnecessary tag
overhead for data that does exhibit spatial locality.
Caches that are split according to the spatial locality
exploit these facts. The cache is split into two
subcaches. Spatial data is cached in a subcache with a
larger block size, while non-spatial data is cached in a
subcache that contains smaller blocks (typically one
word).

The Split temporal/spatial cache was introduced in
[Milutinovic95]. In this design, the cache is split into
a temporal subcache (with block size of one word) and
a spatial subcache (with a block size of four words).
Three possibilities are explored for the ratio between
capacities of spatial and temporal primary subcaches:
1:1, 1:2, and 1:4. A secondary cache is included only
for the temporal subcache. The decision which
subcache to use is done at runtime, profile time or
both, using the same counter-based heuristic. Two
counters per cache block are present in the spatial
subcache. One of those counters, the Y counter, is
incremented at each access to a particular cache
block. At the same time, the other counter (X counter)
is incremented when the upper half of cache block is
accessed and decremented at access to the lower half.

When Y counter saturates, and the absolute value of X
counter is larger than a specified threshold, the cache
block is marked as temporal and removed from the
spatial subcache. The “always” prefetch [Tse98]
strategy is also employed in this design, but only if
both the block causing the prefetch and the prefetched
block are marked as spatial. In this prefetching
scheme, each spatial cache access causes one
consecutive cache block to be prefetched.

 IEEE TCCA Newsletters, 1999. 3

A major drawback of this design is the assumption
that most data are either temporal or spatial. In fact,
most data exhibit both types of locality. Two issues
result from this. The first is that a secondary cache
would be useful in the spatial part, since it caches the
data that exhibits both types of locality as well as
spatial only data. The other issue is the counter-based
heuristic. If data is accessed so that one word is used
several times before the next word is accessed, the
heuristic may mark that block as temporal if Y
counter saturates while only one half of the block is
used. Thereafter, this block is always cached in the
temporal part and causes four misses (one per word
used) instead of only one it would cause in the spatial
subcache.

An interesting piece of research is presented in
[Sahuquillo99]. It is an extension of the Split
temporal/spatial cache for the shared memory
multiprocessor systems.

The Dual data cache was introduced in [Gonzalez95].
In this design, the primary data cache is split into a
smaller (33% of total cache capacity) temporal
subcache and a larger (66% of the total cache
capacity) spatial subcache. Temporal subcache has a
block size of eight bytes, while the spatial subcache
has a larger block size (16 or 32 bytes). The decision
which subcache to use is made at runtime, using a
variant of stride directed prefetch predictor. The
predictor, in essence, tries to detect if a particular
load/store instruction accesses memory at addresses
that differ by a constant stride. Using this
information, at each cache miss the cache controller
decides if data should be cached in temporal subcache,
spatial subcache, or not cached at all. Prefetching the
next block on a cache miss is also done in this design,
but only in the spatial subcache. The most important
drawback of this design is that its locality detection is
based on instructions than on data. This means that if
the CPU accesses a data block in a spatial manner, but
words of that block are accessed by different
instructions, the detection logic could still decide that
a block is non-spatial. Moreover, one instruction
could see the block as non-spatial while the other may
see it as spatial. This means that a particular word
may be cached in both the spatial and non-spatial
subcache. While the authors have shown that this does
not lead to inconsistencies if properly implemented,
the performance may still suffer.

In [Sanchez97], a substantially modified design of the
dual data cache is proposed. The temporal subcache in
this new design is only a small fully associative buffer
(up to 16 single word 8-byte entries) while the spatial
subcache remains large and with the block size of 32
bytes. The decision which subcache to use for each
data access is made at compile time, by performing
data locality analysis.

Moreover, the compiler can mark a particular
load/store instruction as non-cached (i.e. bypass), if
no locality for that particular data access is expected.
The main drawback of this approach is that the
changes to the instruction set are required to
implement different flavors of load/store instructions.
Also, locality information is still based on instructions
rather than on data, and locality of many data accesses
is difficult to determine at compilation time.

The Array cache [Tomasko97a] design splits the
primary data cache into a smaller (25% of the total
cache capacity) scalar subcache and a larger (75% of
the total cache capacity) array cache. Block size in
scalar subcache is 32 bytes while in the array cache it
is larger (experimentally varied from 64 to 512
bytes). The decision which subcache to use for a
particular data access is done at compile time, by
marking the scalar variable accesses to use the scalar
subcache, while array accesses go to the array
subcache. The main drawback of this approach is that
the changes to the instruction set are required to
implement different flavors of load/store instructions.
In addition, the scalar/array heuristic may be widely
inaccurate. Many arrays are accessed in a “random”
manner that exhibits almost no spatial locality, while
scalars that are used in a particular part of the
program are usually stored in neighboring memory
words.

Definitions of Locality
Temporal locality
To exploit the differing amounts of locality in
different ways, a way to determine the amount of each
type of locality is needed. One way is to rely on the
intuitive “sense” of what is temporally or spatially
local and what should not. For example, it is clear
that a variable that is accessed only once during
program execution exhibits no temporal locality,
while a variable which is accessed heavily throughout
the program exhibits a high degree of temporal
locality. Similar extreme examples can also be
produced for spatial locality. Our intent is to treat
different amounts of locality in different ways. It is
clear that we want to treat the extreme cases
differently, but where should one type of treatment
end and the other begin?

The intuition tells us this border should probably be
somewhere between the extremes, where intuitive
“sense” for locality is not very decisive.

A quantitative definition of each type of locality
would be useful. For temporal locality, a good
quantitative definition that closely corresponds with
the intuition is:

 IEEE TCCA Newsletters, 1999. 4

Definition 1: Temporal locality of a data word that is

accessed at time T is
TTnext −

1
, where nextT is the

time of the next consecutive access to that particular
word.

From this definition, it can be concluded that a
temporal locality of a data word that is never accessed
again is zero. If time is measured in CPU cycles, the
data word that is accessed again in the following cycle
has the temporal locality of one. The definition is
based on two consecutive accesses to the same word,
so temporal locality changes at each access to that
particular word. This agrees with the intuitive notion
that temporal localities of data change during the
execution of a program. A replacement policy
“replace the least temporal word”, based on our
definition, closely corresponds to the ideal
replacement policy of “replace the word that will not
be accessed for the longest time in the future”. Exact
spatial locality of a particular word can be determined
only with exact knowledge of the future.

For simplicity, let us ignore spatial locality for a
while. If the capacity of the cache is N words, at each
point of time we want N most temporal words to
reside in the cache. A clear criterion for cache
bypassing results: a missed word should bypass the
cache if it would cause eviction of a word that is more
temporally local. As the ideal replacement policy, this
criterion also can only be approximated because the
exact future behavior is unknown.

A cache controller’s bypassing logic faces a question:
to bypass or not to bypass. The penalty of bypassing a
reference that has high temporal locality is higher
than the penalty of not bypassing a reference that has
low temporal locality. For this reason, we want to be
conservative about bypassing and bypass only the
references with very low temporality. The most
conservative approach (other than “no bypassing at
all” approach) is to bypass only zero-temporality
references.

However, a cache of finite capacity can not exploit
any amount of temporal locality, even with the ideal
replacement policy. If temporal locality of a data word
is too low, it will be replaced from the cache before it
is reused, so a non-zero temporal locality may still be
useless from the perspective of a particular cache.

Definition 2: In a given cache architecture, a
particular data word exhibits useful temporal locality
if it will be accessed again before it is replaced from
the cache.

Given a particular cache design, useless temporal
locality is as good as none. We actually should bypass
references that do not exhibit useful temporal locality.

It should be noted that usefulness is closely tied to the
cache architecture. All other things being equal, a
cache of larger capacity can use temporality that is
useless for a smaller cache. The most important aspect
of this large/small cache bypassing issue is that of a
secondary/primary caches. For a cache of infinite
capacity, caching even a word with no temporal
locality is not harmful, since it does not replace any
other word. Most bypassing techniques bypass only
the primary cache. The secondary cache is considered
large enough to be close to infinite for the purposes of
bypassing. Some other bypassing techniques
determine whether both, only primary or none of the
caches should be bypassed.

As with the replacement policies, we should try to
predict future behavior from the known past behavior.
A simple way to predict whether temporality of a data
word will be useful is to determine if it was useful in
the past. In other words, on a cache miss, we check if
the missing word was used at least twice during its
previous residence in the cache. Two bits are needed
for this – one per word to flag the first use and the
other to flag a reuse. In caches that have multiple
words per block, the entire block is either bypassed or
not. Therefore, one bit per word is needed to mark
first use of a particular word, and one additional bit
per block is needed to mark reuse of any word in that
block. This is exactly how the NTS cache detects if a
block is temporal (having useful temporal locality) or
non-temporal (having no useful temporal locality).

Spatial locality

Spatial locality is harder to quantify than temporal
locality. All reasonable definitions of temporal locality
state that the temporal locality is the property of a
data word to be accessed again in the future. We see
that the temporal locality is expressed by time, even in
a qualitative definition. On the other hand, spatial
locality is always defined by terms that describe both
space (nearby addresses to the one accessed now) and
time (will probably be accessed in the near future).
So, spatial locality must be expressed by both time
and space.

“Time” component of spatial locality expresses the
intuitive notion that, the sooner accesses to nearby
words happen, the more spatial locality the word
being accessed exhibits. In caches, when a word is
accessed, spatial locality enables us to improve
performance by fetching words that are near the one
being accessed. If those nearby words are not accessed
soon enough, they will be evicted from the cache. This
means that spatial locality may be useless in a given
cache architecture. We want to exploit only useful
spatial locality.

 IEEE TCCA Newsletters, 1999. 5

Let us now consider the “space” component of spatial
locality for a given data word W. It is intuitively clear
that the more words from the W’s neighborhood are
accessed in the near future, the more spatial locality
W exhibits. In this paper, we seek to exploit spatial
locality through sequential prefetching techniques and
varying cache block sizes. Therefore, if some word P
is prefetched when W is accessed, we assume then all
the words between W and P are either already present
in the cache, or prefetched at the same time when P is
prefetched. Under these conditions, we can define
useful spatial locality:

Definition 3: Let data word W at address A be
accessed. Let S be a contiguous sequence of data
words that contains the word W, having the property
that each word in S would be accessed before it is
evicted from the cache, were it fetched when W was
accessed. Let L be the number of words in the longest
of all such sequences. Useful spatial locality of W is
then equal to L-1.

From this definition, we see that if no nearby word is
accessed within reasonable time after word W at
address A is accessed, the spatial locality of W is zero.
If only word at A+1 is accessed within reasonable
time, the spatial locality of W is one and so on.
Spatial locality also changes with each access to data
word W, which also corresponds with our intuitive
notion of spatial locality.

In a data cache, two obvious methods of spatial
locality exploitation exist: caching multiple words per
block and prefetching. Let us consider a cache that
consists of blocks that are K words wide. If all data
exhibits spatial locality of about K or more, the miss
rate is reduced K times. However, if spatial locality L
exhibited by the data is lower than K, then the hit rate
is reduced only by L, while the remaining word in the
cache line are useless. The words that are brought into
the cache and never used afterwards only waste cache
space and bus bandwidth.

Split caches seek to reduce this waste by fetching and
caching large blocks only when spatial locality
justifies it. As with bypassing, the penalty for fetching
only a single spatial word is higher than the penalty of
fetching multiple words on a low spatiality miss.
Again, we would want to be conservative about this
issue, and the most conservative approach is to fetch a
single word only when it is not-spatial (its spatial
locality is zero). In all other cases, an entire block of
multiple words is fetched.

Exact spatial locality of a data word can not be known
when it is accessed, since it requires knowledge of the
future. Again, the best we can do is to predict future
from the past behavior. Keeping track of
spatiality/non-spatiality on a per word basis is
impractical, so an entire cache block may be
considered non-spatial if during its previous residence
in the cache only one of its words was accessed. To
detect this, only one bit per word is needed. This bit
should be set at first access to that particular word.
When the block is evicted from the cache, these bits
are checked. If more than one bit is set, then the block
is spatial. Otherwise, it is non-spatial. An interesting
observation that should be made here is that both the
spatial locality detector described here and the
temporal locality detector described in the previous
section (and used in NTS cache) use these per-word
bits for the same purpose.

Therefore, if detection of temporal locality described
in the previous section is already present, spatial
locality detection can be done using the same per-
word bits, at almost no additional hardware cost.

Prefetching is another way of exploiting spatial
locality. If spatial locality is more than the size of a
cache block, then prefetching can further exploit the
existing spatial locality. Again, if there is no spatial
locality to justify prefetching, an entirely useless cache
line could be prefetched.

NO BLOCK PRE FETCH

SP ATIA L ITYN
O

U
S

E
F

U
L

T
E

M
P

O
R

A
L

IT

NTS

PF

SS /NS

STS

Figure 1: Temporal-spatial locality plane. Definitions of temporal and spatial locality can be used to represent
each split cache design, or another method for optimized locality exploitation, as a line in the temporal-spatial
locality plane. Several posible split cache designs are presented: STS (Split Temporal/Spatial), SS/NS (Split
Spatial/Non Spatial), PF (Prefetch/No Prefetch), and NTS (Non Temporal Streaming).

 IEEE TCCA Newsletters, 1999. 6

Although a flag-based decision making similar to
those described above can be devised, it is far more
common to detect a sequence of accesses and the
prefetch the cache block which should be the next in
this sequence. When a large amount of spatial locality
is present in a program, most probably it comes from
a very particular type of data access - array walk-
through. Therefore, various methods that try to detect
array walk-through should be enough to support our
prefetching decisions.

Experimental Set-Up
The performance evaluation of Split Temporal/Spatial
(STS) cache in [Milutinovic96a] was done using the
ATUM traces [Agarwal86] collected on a DEC VAX
by altering its microcode. These traces were fed into
software simulators of the STS cache and the
conventional cache (for comparison). Performance
results are reported in [Milutinovic96a] by giving the
percentile performance improvement of STS over the
classical cache design, using the average memory
latency as the performance indicator. The results are
presented in Figure 2. The ATUM traces have the
advantage of including not only the memory accesses
of a single application. These traces contain all the
data accesses of a processor, including OS activities.

However, these traces are quite old and contain fewer
data accesses when compared to modern benchmarks.
Therefore, we felt that evaluation of STS using the
newer IBS traces (which also include OS references)
and SPEC benchmarks would increase confidence in
the STS design and perhaps direct us toward
improved split cache designs.

To re-evaluate the performance of the split
temporal/spatial cache, we developed a functional
cache simulator. Then we fed the simulator with the
data memory access streams extracted from IBS
traces, as well as the data memory access streams
obtained by running applications from the SPEC 95
benchmark suite.

Development of the cache simulator proved to be the
easiest part. The simulator was developed in C++.
The major components are a generic trace reader and
functional simulator of the classical cache design.

Inheritance mechanisms were then used to derive
several variants of STS cache from the classical cache
design and to derive the IBS and Pixie trace readers
from a generic one.The IBS traces were readily
available. However, to get the data access streams of
SPEC95 applications we had to employ the Pixie
instrumentation tool on an SGI MIPS-based
workstation.

SPEC95 benchmark suite is used to evaluate high-
performance computers. Each application in SPEC95
has three different input data sets: test, train, and
reference. Test data sets should be used to test the
correctness of program execution. Training data sets
should be used for profiling in optimizing compilers.
Reference data sets are intended for use in actual
evaluation of computer systems.

A single, non-instrumented SPEC95 application using
its reference input data set takes on the order of hours
to execute on an actual SGI MIPS R10000-based
workstation. It is obvious that it is neither possible to
simulate the entire reference stream of a reference
run, nor it is possible to store such trace for the
purpose of simulation.

Figure 2: Relative percentile performance improvement of the STS variants compared to the conventional
cache (ATUM). Conventional cache is a two level cache with C1 primary and C2 secondary cache. STS1 is
STS cache with C1/2 primary spatial part with prefetch mechanism, C1/2 primary temporal part and C2/2
secondary temporal part. STS2 is the same as STS1 with different cache sizes: C1, C1/2, and C2/2,
respectively. Cache sizes for both STS4a and STS4b are 2C1, C1/2, and C2/2. The access times for the
conventional hierarchy and hierarhies of the temporal parts in the STS1, STS2, and STS4a variants are two
cycles for the first level and four cycles for the second level, and one cycle for the first level and two cycles for
the second level of STS4b.

���

�

��

��

��

��

��

'
,$
�

'
(
&
�

'
(
&
�

8
0
,/
�

8
0
,/
�

/
,6
3

)
2
5
/

,9
(
;

6
3
,&

0
8
/
�

0
8
�
�

0
8
/
�

$
Y
H
UD
J
H

676�

676�

676�D

676�E

 IEEE TCCA Newsletters, 1999. 7

Not storing traces is not a problem. The trace stream
generated by the instrumented application can be
immediately fed to the cache simulator through a
pipe. However, reduction in the number of data
accesses to be simulated in each application should
maintain the overall data access pattern of that
particular application. A sampling technique, in
which evenly spaced parts of the trace are simulated
while the remaining parts are skipped, is a good
candidate.

However, this approach leads to many cache misses at
the beginning of each simulated portion, where the
working set of one simulated portion is
discontinuously exchanged with the working set of
another.

The approach used in this paper is to execute a
statistics-gathering run using the reference data set of
an application. Statistics such as the percentage of
writes and reads and several data locality indicators
such as conventional cache hit ratios are collected
during this run.

Then we run the same application using its training,
test, and reference input data set and search for a
portion of trace that has statistics close enough to
those of the entire reference run.

When evaluating a particular cache design, we
simulate the entire data access stream from the
beginning of the trace, but collect performance
statistics only during execution of the “significant”
portion we found. It is unnecessary to simulate past
the end of the “significant” portion. It is obvious that
it is desirable to find a “significant” portion as close to
the beginning of the trace as possible, in order to
reduce the number of data accesses simulated before
the start of the “significant” portion.

Let P be the number of data memory accesses before
“significant” portion begins, and let S be the number
of accesses in the “significant” portion. We need to
simulate a total of P+S accesses, although statistics
are gathered only for S accesses of a “significant”
portion. For our evaluation, for each application we
seek a significant portion that meets the following
conditions:

1) “Significant” portion contains at least 10 million
accesses (S≥10,000,000)

2) If the percentage of writes in the entire reference
run is Wp, the percentage of writes in the
“significant” portion must be between 0.99Wp and
1.01Wp.

�

���

�

���

�

���

�

���

J
UR
II
�P

D
F
K
�

J
V
�P

D
F
K
�

MS
H
J
�P

D
F
K
�

P
S
H
J
�P

D
F
K
�

Q
UR
II
�P

D
F
K
�

J
F
F
�P

D
F
K
�

V
G
H
W
�P

D
F
K
�

Y
H
UL
OR
J
�P

D
F
K
�

Y
LG
H
R
�P

D
F
K
�

$
Y
H
UD
J
H
�P

D
F
K
�

J
UR
II
�X
OW
UL
[
�

J
V
�X
OW
UL
[
�

MS
H
J
�X
OW
UL
[
�

P
S
H
J
�X
OW
UL
[
�

Q
UR
II
�X
OW
UL
[
�

J
F
F
�X
OW
UL
[
�

V
G
H
W
�X
OW
UL
[
�

Y
H
UL
OR
J
�X
OW
UL
[
�

Y
LG
H
R
�X
OW
UL
[
�

$
Y
H
UD
J
H
�X
OW
UL
[
�

$
Y
H
UD
J
H
�,
%
6
�

&ODVVLF

676� 5�

676� 3�

Figure 3: Average memory latency (IBS traces). STS1 R6 is an STS cache that has equal spatial and temporal
primary subcaches; locality decision is made at runtime and threshold for X and Y counters are both set at six.
STS1 P9 makes locality decisions by profiling using nine as the threshold for both counters. Classic is a
conventional cache with a primary cache equal to the sum of capacities of STS subcaches and a secondary
cache twice the secondary temporal cache of STS [Uhlig95].

 IEEE TCCA Newsletters, 1999. 8

3) Let HR1 and HR2 be the hit rates of 2kB primary
and 16kB secondary caches in the conventional
cache hierarchy for an entire reference run, and
let HP1 and HP2 be the corresponding hit rates for
the “significant” portion. Then the following
must hold: 0.99HR1 ≤ HP1 ≤ 1.01HR1 and
0.99HR2 ≤ HP2 ≤ 1.01HR2.

4) We examine other statistics for the “significant”
portion and an entire reference run and reject
portions that satisfy 1), 2), and 3) but are
dissimilar to the entire reference run according to
some other statistic.

Of all the portions satisfying the above conditions, we
take the one that has the smallest P+S.

Experimental Results
The IBS traces are readily available and contain few
enough accesses to be simulated in entirety.
Therefore, our initial re-evaluation of STS cache
design was done using the IBS traces. We assumed
the same STS cache design as in [Milutinovic96a].
All caches are 4-way set associative. The capacity of
primary cache in STS is equally divided between its
temporal and spatial subcaches. Secondary cache in
the conventional cache system is eight times larger
than the primary cache. Secondary temporal cache is
eight times the size of the primary temporal subcache.
Spatial subcache has no secondary cache. Access
times differ from those in [Milutinovic96a] because
the technology has progressed since then. We assume
that each primary cache hit takes one cycle. A
secondary cache hit takes four cycles for the first four-
byte word and a cycle for each additional word.

A cache miss takes 16 cycles for the first word and a
cycle for each additional word (i.e., the data busses
are all 32 bits wide). Conventional cache and spatial
subcache of STS cache have line sizes of four words,
while the temporal subcache of STS has the line size
of one word.

It is obvious from Figure 3 that, on the average, both
runtime and profiling-based STS designs outperform
a conventional cache of similar complexity (see
[Milutinovic96b] for STS cache complexity
evaluation). Such results on IBS benchmarks justify
the effort needed to evaluate the STS cache design
using the SPEC95 benchmark suite.

When SPEC benchmarks are run on a R10000 SGI
workstation, the machine word is eight bytes. For this
reason, line sizes are different than in
[Milutinovic96a]: temporal cache line size is eight
bytes, spatial and conventional caches have 32-byte
line size, and the busses are 8-byte (64bits) wide. All
the other parameters are as previously described.

Results of evaluation using five SPECfp95
applications are shown in Figure 4. The STS cache
outperforms the classical hierarchy on the average,
but the difference is not so obvious as in the case of
IBS traces. Careful analysis of our simulation results
revealed that SPEC benchmarks access fewer non-
spatial data words than the IBS traces do. At the same
time, the working sets are much larger in the SPEC
applications than in the IBS traces. Therefore, most
primary cache misses happen in the spatial part of
STS, which does not contain a secondary cache.

Figure 4: Average memory latency (SPEC). STS1 R5 is an STS cache that has equal spatial and temporal
primary subcaches; locality decision is made at runtime and threshold for X and Y counters are both set to five.
STS1 P5 makes locality decisions by profiling using five as the threshold for both counters. Classic is a
conventional cache with a primary cache equal to the sum of capacities of STS subcaches and a secondary
cache twice the secondary temporal cache of STS.

�

�

�

�

�

�

�

�

�

�

D
S
S
OX

K
\
G
UR
�
G

P
J
UL
G

V
Z
LP

WR
P
F
D
WY

$
Y
H
UD
J
H

&ODVVLF

676� 5�

676�� 3�

 IEEE TCCA Newsletters, 1999. 9

Analysis of the Results
The STS cache shows improved overall performance
over the conventional cache. However, it can be seen
that for some applications STS has lower overall
performance while for some other applications it
shows huge improvements. As the first step in
improving the STS design, we want to explain this
variation in performance.

Our experiments with varying X and Y counter
thresholds (XMax and YMax) indicate optimum
values for these thresholds vary greatly between the
applications. For example, in runtime-based STS most
IBS traces show best results when the XMax and
YMax are both six or seven, but JPEG under Ultrix
shows best performance when the thresholds are 17.
The purpose of counters is to determine if only one
half of a spatial cache line is used most of the time. If
a single half of particular cache line is accessed Xmax
times in a row, then the line is marked temporal.
Consider a program that accesses a particular word
several times and then moves on to the next word. An
STS cache having small Xmax and Ymax may
declare the line temporal before the program accesses
gets to access the other half, thus moving an
essentially spatial line into the temporal subcache. On
the other hand, if the thresholds are too high, an
actually temporal line gets accessed a few times, but Y
counter never saturates and the line is never declared
temporal.

To overcome this problem, a different heuristic for
detecting temporal locality is needed. We are
currently evaluating a scheme in which a simple flag
is kept for each part of the spatial cache line. This flag
is initially reset to zero and is set to one when that
part of the cache line is first accessed. On eviction, if
only one of the flags is set, the line is temporal
(because only one part of it was accessed). For
example, two flags per line are enough to detect if
only a single half of cache line was accessed.

Another problem in STS design is that, once the data
is declared temporal, there is no way for it to be
declared spatial again. If a line that is actually spatial
is marked as temporal, it will always be cached in the
temporal part. Caching lines that do exhibit spatial
locality in the temporal part is costly - instead of
incurring one miss per four words in the spatial part,
one miss for each of the four words is incurred in the
temporal part.

To overcome this problem, a way to detect spatial
locality in the temporal subcache is needed. We are
currently investigating a scheme in which, at each
temporal cache miss, a neighboring line is sought in
the temporal cache. If a neighboring line is present, it
is evicted, and a larger line is fetched into the spatial
part (and marked spatial, of course).

Different applications access different mixtures of
spatial and temporal (non-spatial) data. The results in
previous section indicate that a second level of cache
is needed in the spatial part of STS. However, future
experiments are needed to determine if:

1) only the spatial part should have secondary cache

2) each part should have its own secondary cache

3) there should be only one secondary cache shared
by both the temporal and the spatial part

Finally, optimum ratio of spatial to temporal subcache
capacity varies. This problem can only be attacked by
dynamic (runtime) allocation of cache capacity
between spatial and temporal subcache. We are
currently not considering such designs.

Conclusion
Split caches offer performance improvements over
conventional (non-split) caches because they are better
suited to exploitation of different locality patterns
commonly found in applications. We have evaluated
the performance of Split Temporal/Spatial cache
design and of conventional two level cache hierarchy,
using the IBCS traces and several SPECfp95
applications as workload. We have shown that STS
design does indeed offer improved performance, but
our experiments indicated that there is still room for
refinement of the STS design. This is why we, guided
by these experimental results, concluded with a brief
overview of possible changes that could improve the
STS design. Our future work will concentrate on
simulation and evaluation of these improvements.

Acknowledgments
The authors are thankful to their colleagues at the
University of Belgrade: Jelica Protiü� Aleksandar
Milenkoviü� DQG ,JRU ,NRGLQRYLü IRU WKH KHOS DQG

numerous sugestions during the work on this paper.

 IEEE TCCA Newsletters, 1999. 10

References

[Agarwal86] Agarwal, A., Sites, R., Horowitz, M., “ATUM: A
New Technique for Capturing Address Traces Using
Microcode,” Proceedings of the 13th Annual
Symposium on Computer Architecture, Tokyo,
Japan, June 1986, pp. 119-127.

[Chan96] Chan, K. K., Hay, C. C., Keller, J. R., Kurpanek, G.
P. Schumacher, F. X. Zheng, J., “Design of the HP
PA7200 CPU,” Hewlett-Packard Journal, February
1996, pp. 1-12.

[Gonzalez95] Gonzalez, A., Aliagas, C. and Valero, M., “A Data
Cache with Multiple Caching Strategies Tuned to
Different Types of Locality,“ Proceedings of the
International Conference on Supercomputing (ICS
’95), Barcelona, Spain, 1995, pp. 338-347.

[Johnson97a] T. L. Johnson and W. W. Hwu, “Run-time Adaptive
Cache Hierarchy Management via Reference
Analysis,” Proceedings of the 24th International
Symposium on Computer Architecture, Denver,
Colorado, June 1997.

[Johnson97b] T. L. Johnson, M. C. Merten, and W. W. Hwu,
“Run-time Spatial Locality Detection and
Optimization,” Proceedings of the Micro-30,
Research Triangle Park, North Carolina, USA,
December 1997.

[Milutinovic95] Milutinovic, V., "The STS Cache," University of
Belgrade Technical Report #35/95, Belgrade,
Serbia, Yugoslavia, January 1995.

[Milutinovic96a] Milutinovic, V., Markovic, B., Tomasevic, M.,
Tremblay, M., “The Split Temporal/Spatial Cache:
Initial Performance Analysis,” Proceedings of the
SCIzzL-5, Santa Clara, California, USA, March
1996, pp. 63-69.

[Milutinovic96b] Milutinovic, V., Markovic, B., Tomasevic, M.,
Tremblay, M., “The Split Temporal/Spatial Cache:
A Complexity Analysis,” Proceedings of the
SCIzzL-6, Santa Clara, California, USA, September
1996, pp. 89-96.

[Sanchez97] Sanchez, F. J., Gonzalez, A., Valero, M., “Software
Management of Selective and Dual Data Caches,“
IEEE TCCA NEWSLETTERS, March 97, pp. 3-10.

[Sahuquillo99] Sahuquillo, J., Pont, A., “The Split Data Cache in
Multiprocessors Systems: An Initial Hit Ratio
Analysis,“ Proceedings of the 7th Euromicro
Workshop on Parallel and Distributed Prcessing,
Madeira, Portugal, February 1999.

[Rivers96] Rivers, J. A., Davidson, E. S., “Reducing Conflicts
in Direct-mapped Caches with a Temporality Based
Design,” Proceedings of the International
Conference on Parallel Processing, 1996.

[Tomasko97a] Tomasko, M., Hadjiyiannis, S. and Najjar, W. A.,
“Experimental Evaluation of Array Caches,“ IEEE
TCCA NEWSLETTERS, March 97, pp. 11-16.

[Tomasko97b] Tomasko, M., Hadjiyiannis, S. and Najjar, W. A.,
“Evaluation of a Split Scalar/Array Cache,”
Technical report CS-TR-97-105, Colorado State
University, Fort Collins, Colorado, USA, January
1997.

[Tse98] Tse, J., Smith, A. J., "CPU Cache Prefetching:
Timing Evaluation of Hardware Implementations,"
IEEE Transactions on Computers, May 1998, pp.
509-526.

[Tyson95] G. Tyson, M. Farrens, J. Matthews, and A. R.
Pleszkun, ``A modified approach to data cache
management,'' Proceedings of the 28th Annual
International Symposium on Microarchitecture,
December 1995, pp. 93--103.

[Uhlig95] Uhlig, R., Nagle, D., Mudge, T., Sechrest, S., Emer,
J., "Instruction Fetching: Coping with Code Bloat,"
Proceedings of the 22nd International Symposium
on Computer Architecture, Santa Margherita
Ligure, Italy, June 1995, pp. 345-356.

