
 IEEE TCCA Newsletters, 1999. 1

The Split Spatial/Non-Spatial Cache:
A Performance and Complexity Evaluation

0LORã 3UYXORYLü� 'DUNR 0DULQRY� =RUDQ 'LPLWULMHYLü� 9HOMNR 0LOXWLQRYLü

Department of Computer Engineering
School of Electrical Engineering

University of Belgrade
P.O BOX 35-54

11120 Belgrade, Serbia, Yugoslavia

*From August 98, at the University of Illinois at Urbana-Champaign
**From August 98, at the Massachusetts Institute of Technology

prvul@computer.org, darko@mit.edu, zorand@galeb.etf.bg.ac.yu, vm@etf.bg.ac.yu

Abstract
A simple new method of detecting useful spatial locality
is proposed in this paper. The new method is tested by
incorporating it into a new split cache design.
Complexity estimation and performance evaluation of
the new split cache design is done in order to compare
it to the conventional cache architecture and the split
temporal/spatial cache design.

Introduction
In recent years, the speed gap between dynamic
memories and microprocessors has been steadily
increasing. For this reason, a lot of effort is invested
into finding ways to reduce or hide memory latency.
One of the oldest and most powerful ways of reducing
the memory latency is through use of cache memories.

Caches exploit the locality of data access. A small (but
fast) memory is able to satisfy most memory access
requests issued by the processor, so in most cases there
is no need to wait for slow (but large) main memory to
respond. Conventional cache designs non-selectively
cache all data. If the memory request is not satisfied
from the cache, the main memory response has to be
waited for. However, at the same time memory contents
are brought into the cache in hope that future processor
accesses will reuse this data. The property that the same
data items tend to be accessed again in the near future is
called temporal locality. Neighboring data items tend to
be accessed in the near future, so spatial locality also
exists. Spatial locality is exploited by bringing in an
entire cache block (with several data words in it).

Today, it is widely recognized that not all data exhibit
both types of locality, and some data exhibits no locality
at all. For example, clearing a large vector involves
spatial locality only, because each data item is accessed
only once. Frequent accesses to a single global counter
are in most cases temporal only, because neighboring
data items are often not used so heavily. Most accesses
to large hash tables exhibit neither type of locality. If a
data item exhibits no temporal locality, bringing it into
the cache is useless. If no spatial locality is exhibited by
a data item, bringing an entire cache block is even more
wasteful.

Several ways to detect differing localities and exploit
each in a manner suited to that particular locality type
are found in the open literature. Here we will
concentrate on an increasingly popular way of
exploiting different data localities – splitting the cache
into several subcaches, with each subcache designed
with a particular type of locality in mind. First, we will
survey the existing split cache designs. Then we will
provide quantitative definitions for both locality types.
Finally, we will provide a way to represent each solution
as a line in the temporal-spatial locality plane.

The Split Spatial/Non-Spatial Cache
Variations in temporal locality is easier to efficiently
detect and exploit, so the design space in this are is
narrower and better explored than in the are of spatial
locality exploitation. Because almost any technique for
exploitation of varying temporal locality is compatible
with any technique for exploiting varying spatial
locality, we will concentrate on devising a new design
for spatial locality exploitation.

Chronologically: Paper #2

 IEEE TCCA Newsletters, 1999. 2

This new design will utilize cache splitting and
prefetching in order to exploit any degree of spatial
locality in the most efficient manner. The primary cache
is split into two subcaches, according to the spatial
locality of data. The non-spatial subcache consists of
blocks that are one word (eight bytes) wide, and is
intended to cache data words exhibiting no useful
spatial locality. The spatial subcache consists of blocks
that are 32 bytes (four words) wide, and is intended to
cache the data words exhibiting useful spatial locality.
The number of blocks in the non-spatial and in the
spatial part is the same. Therefore, the capacity of the
spatial part is four times the capacity of the non-spatial
part. Because the block sizes in the spatial and the non-
spatial subcaches are different, we will hereafter refer to
a spatial block as “block,” and use “sub-block” to refer
to a non-spatial block. For example, one block consists
of four sub-blocks.

The flag-based method of spatial locality detection is
used to detect if the data exhibits useful spatial locality.
Each block in the spatial subcache is associated with
four bits (one for each word in the block). These bits are
initialized to zero when the block is fetched into the
cache, and each bit is set when the corresponding word
has been accessed. When that block is evicted from the
cache, the four bits associated with it are examined. If
less than two of these four bits are set, the block exhibits
no useful spatial locality (since none or only one of its
words has been accessed during its lifetime in the
cache). This block is marked as non-spatial, and the
next access to any sub-block of that block will cause
(only) that sub-block to be fetched into the non-spatial
subcache.

In the non-spatial subcache, a method of detecting
spatiality is also necessary. If two or more sub-blocks
that are parts of the same block are present in the non-
spatial subcache, then this block should be marked as
spatial and cached in the spatial subcache.

Since caching spatial blocks in the non-spatial subcache
causes a miss whenever a new sub-block of that block is
accessed, we want to stop caching such blocks in non-
spatial cache as soon as they are detected to be spatial.
Therefore, each miss in the non-spatial subcache
invokes a search for the other subblocks that belong to
the same block as the missed sub-block. If any such sub-
block is found, fetching another sub-block into the non-
spatial subcache would cause two sub-blocks of the same
blocks to reside in the cache, which indicates that the
block in question is spatial. Instead, the block is marked
as spatial and a fetch of the entire block into the spatial
subcache is initiated. The one sub-block that was found
in the non-spatial cache is transferred into the newly
allocated block in the spatial cache and invalidated in
the non-spatial cache. Since fetching the missed sub-
block into the non-spatial subcache would cause a miss
anyway, the hit rate does not suffer from this kind of
transfer between the subcaches. Another question is how
to determine if sub-blocks belonging to the same block
as the missing one are present in the non-spatial
subcache. Figure 1 shows a design that detects this
situation as soon as hit/miss of the sub-block being
accessed is detected. This is important because
otherwise the tag array access of the non-spatial
subcache could become a bottleneck.

When spatial locality is too large to be exploited by
multiple-worded cache blocks, prefetching is used. The
spatial locality of data that resides in the non-spatial
subcache does not even justify caching multiple words.
Prefetching in the non-spatial subcache would therefore
be useless. For this reason, prefetching should only be
done for data that resides in the spatial subcache.

Various prefetching methods may be implemented, but
“always,” “flag” and “bi-directional” are particularly
well suited for implementation in this design.

Set 4k+0 Set 4k+1 Set 4k+2 Set 4k+3

Hit? Hit? Hit? Hit?

OR MUX

Spatial Hit

Figure 1: Detecting spatiality in non-spatial part of SS/NS cache.

 IEEE TCCA Newsletters, 1999. 3

Whenever a cache block is accessed, “always” initiates a
fetch of the next cache block. As spatial blocks are
accessed multiple times during their lifetime in the
cache, only the first access is likely to initiate a useful
prefetch. Other accesses initiate a prefetch of a block
that has already been prefetched, thus degrading
performance by making cache tag ports busy (to check
presence of the block for which a prefetch has been
initiated).

“Flag” is similar to “always,” but a prefetch is initiated
only at first access to a particular block. Implementation
of “flag” in a conventional cache design requires one bit
per block to mark whether the block has already been
accessed or not (thus the name “flag”). In the spatial
subcache, no additional bit is required. The block has
been accessed if any of its words is accessed, so if none
of the four bits associated with the block is set, a
prefetch is initiated.

“Bi-directional” is a bit more sophisticated and intends
to exploit an array walk-through in either forward or
backward direction. When block B is accessed, if block
B-1 is present in the cache a prefetch of B+1 is initiated,
while presence of block B+1 initiates a prefetch of block
B-1. In a conventional cache, this technique causes the
cache tag array to be busy with three accesses (for block
B, as well as for blocks B+1 and B-1) instead of one. In
the spatial subcache, the four bits can be used to detect
forward or backward array walk-through without
accessing neighboring blocks. When block B is
accessed, block B+1 should be prefetched if the lower
half of the block was used before and this is the first
time the upper half is accessed. Block B-1 should be
prefetched if the upper half was accessed before and this
is the first access to the lower half of the block.

In [Prvulovic98] it was indicated that in caches split
according to the spatial locality, a secondary cache is
useful for both spatial and non-spatial data. The
question remains whether to the secondary cache should
also be split according to spatial locality or not. In this
design, we have decided not to split the secondary
cache, in order to keep the design relatively simple. Any
prefetching will always be done into the primary cache
in this design. There will be no prefetching into the
secondary cache only. We have described a way to
determine if useful spatial locality exists in a particular
block while it is in the cache. It remains to be shown
how the locality information about each block is to be
kept while the block is not in any of the two subcaches.

The shared secondary cache can store locality
information for each block that is present in secondary
cache. For data that are not present in the secondary
cache, one-bit spatial locality predictor can be used. In
this design, we assumed that the predictor contains 512k
one-bit entries, but we will examine the performance
implications of varying the number of entries in this
predictor. Locality information provided by this
predictor is read and updated only on secondary cache
misses and writebacks, so slow and cheap dynamic
memory elements can be used for this predictor. No tags
are necessary for the locality predictor because
inaccurate prediction does not lead to inconsistencies in
program execution.

For related readings see the following papers [Chan96,
Gonzales95, Johnson97a, Johnson97b, Milutinovic96a,
Milutinovic96b, Sahuquillo99, Sanchez97, Reilly95,
Rivers96, Tomasko97, Tse98, and Tyson95].

Complexity Estimation
In the following section, we will evaluate the
performance of the Split Spatial/Non-Spatial (SS/NS)
cache and compare it to the conventional cache, as well
as with the Split Temporal/Spatial cache of similar
complexity. We assume that the caches are physically
tagged, with the physical address being 36 bits wide,
which is common in today’s 64-bit microprocessors. We
will use the total number of bits required to implement
each level of the hierarchy as a measure of complexity.
Primary caches are faster and usually consume precious
on-chip space, while secondary caches may be slower
and are usually off-chip. Therefore, each bit in the
primary cache is more costly than a bit in the secondary
cache. The locality predictor in the SS/NS cache (and in
STS) is not included in this evaluation since it requires
only the cheap and slow dynamic memory elements.

Each cache block in a cache contains data bits, tag bits,
LRU bits and a validity bit. Write-back caches include a
dirty bit, the SS/NS spatial primary subcache includes
four bits (F-bits) per block to detect spatial locality and
the SS/NS secondary cache includes one bit (L-bit) to
mark spatial locality of the block. The STS spatial
primary subcache includes two four-bit counters (C-bits)
to determine data locality. Since all caches are three or
four-way set associative, two bits are enough to encode
LRU state information. Since number of sets is a power
of two in all cases in Table 1, bits of the address that
encode the set number need not be stored in the tag.

 IEEE TCCA Newsletters, 1999. 4

Primary Secondary
Size (kB) Associativity Bytes per Block Write policy

NS, T S NS, T S NS, T S NS, T S
Size Assoc Block WP

CNV 8kB 4-way 32 WT 64kB 4-way 32 WB
STS 4kB 4kB 4-way 4-way 8 32 WT WB 32kB* 4-way 8 WB

SS/NS 1.5kB 6kB 3-way 3-way 8 32 WT WT 64kB 4-way 32 WB
Table 1: Cache parameters for complexity and performance evaluation.
Legend: CNV–Conventional cache; STS–Split Temporal/Spatial cache; SS/NS–Split Spatial/Non-Spatial cache;
NS–Non-Spatial; T–Temporal; S–Spatial; WT–Write Allocate, Write Through; WB–Write Allocate, Write Back;
K-way–K-way set associative; Assoc–Associativity; Block–Bytes per block; WP–Write policy; Size–Cache size in kB.
* Only temporal data is cached in STS secondary cache.

Number of Bits per Block
Blocks LRU+V+D+F+C+L Tag Data Total

NS, T S NS, T S NS, T S NS, T S NS, T S

Total
Number
Of Bits

Primary Cache of an “8K” design
CNV 64*4 2+1+0+0+0+0 25 256 284 72704
STS 128*4 32*4 2+1+0+0+0+0 2+1+1+0+8+0 26 26 64 256 93 294 85248

SS/NS 64*3 64*3 2+1+0+0+0+0 2+1+0+4+0+0 27 25 64 256 94 288 73344
Table 2: Cache complexity evaluation.
Legend: CNV–Conventional cache; STS–Split Temporal/Spatial cache; SS/NS–Split Spatial/Non-Spatial cache;
NS–Non-Spatial; T–Temporal; S–Spatial; LRU–Replacement policy; V–Validity bit; D–Dirty bit; F–Bits to detect
spatial locality; C–Counter bits; L–Bit to mark spatial.
* Only temporal data is cached in STS secondary cache.

Performance Evaluation
For simplicity, we will refer to cache hierarchies
described in Table 1 as “8K” caches. A “32K” cache
has all “Size” parameters form Table 1 multiplied by
four, and other parameters remain the same. For
example, an “SS/NS 8K” cache has a total capacity of
7.5kB in the primary cache and 64kB in the secondary
cache. Similarly, a “SS/NS 32K” cache has a total
capacity of 28kB in the primary cache and 256kB in
the secondary cache. If “always” prefetching is
included in the design, PfA is added to the mnemonic
for that design, and PfB is added if “bi-directional”
prefetching is used. Therefore, a “CNV 32K PfA” is a
conventional cache hierarchy “always” prefetching into
the 32kB primary cache, with the secondary cache
being 256kB and all other parameters same as in Table
2. It will also be interesting to compare a prefetching
SS/NS design with a non-prefetching conventional
design with a larger block size. Therefore, “CNV 8K
64B” is the same as “CNV 8K” except both primary
and secondary caches contain blocks of 64 bytes.

The STS cache as originally described in
[Milutinovc95] incorporates “always” prefetching,
“STS 8K” actually means “STS 8K PfA”.

The original STS design proposes runtime-based and
profile-based locality detection, and involves
parameters – the X and Y counter limits. Fortunately,
optimum performance is most often achieved when X
and Y limits are equal. For each set of benchmarks,
STS performance will be reported only for the counter
values that result in optimum average performance on
that set of benchmarks. The type (runtime or profiling)
and counter limits for STS cache are signified in the
mnemonic by a letter followed by the number.
Therefore, “STS 8K P11” means profile-based “STS
8K” with both counter limits set to 11 and “STS 8K
R7” is a runtime-based “STS 8K” with both counter
limits set to seven.

Performance will be expressed using the average
memory latency and bus traffic as performance
measures. In our evaluation, each primary cache hit
has a latency of one cycle. A secondary cache hit has a
latency of four cycles for the first word and one cycle
per word thereafter. Latency of a miss is 16 cycles for
the first word and one cycle per word thereafter. Bus
traffic is expressed in bus activity cycles per data access
issued by the CPU. Bus activity includes only data
transfer cycles of data fetches and prefetches
(writebacks are ignored).

 IEEE TCCA Newsletters, 1999. 5

We used the IBS [Uhlig95] traces as the first set of
workloads. These traces contain both application and
OS data references collected during execution of nine
applications under Ultrix and Mach operating systems.

It is obvious from Table 3 and Table 4 that the SS/NS
cache improves the performance significantly over the
conventional cache when no prefetching is used.
Performance of the STS cache (which incorporates
PfA) lags far behind the performance of prefetching
SS/NS. However, the most stunning observation can be
made from Table 5 and Table 6. Prefetching in the
conventional cache hierarchy significantly increases
bus traffic, but reduces average latency. The effect of
prefetching on memory latency in SS/NS cache is about
the same as in conventional hierarchy. However,
prefetching causes a negligible bus traffic increase in
SS/NS. To achieve this effect, it is not necessary to
split the cache.

The bus traffic in a conventional hierarchy should not
increase much when prefetching is added if flag-based
spatial locality detection mechanism is incorporated
and only accesses to spatial blocks are allowed to
initiate prefetches. This is very important for
prefetching in shared memory multiprocessing
environments, where the bus is usually the bottleneck.

Second set of workloads is several SPEC95
applications. Results are shown in the following tables.
We did not present simulation results for STS caches
because results vary substantially for different values of
X and Y counter thresholds.

Results obtained from simulations using SPEC traces
completely confirm conclusions obtained analyzing
results from simulations using IBS traces.

Summaries of average memory latency and average bus
traffic are presented on Figure 2 and 3.

groff gs jpeg mpeg nroff gcc sdet verilog video Mach (avg)
CNV 8K 1.224 1.394 1.456 1.748 1.194 1.312 1.734 1.931 1.919 1.546
CNV 8K PfA 1.164 1.219 1.281 1.354 1.097 1.222 1.484 1.289 1.467 1.286
CNV 8K 64B 1.299 1.440 1.511 1.726 1.212 1.410 1.844 1.783 1.872 1.566
STS 8K R11 1.242 1.343 1.535 1.706 1.211 1.362 1.785 1.400 1.736 1.480
STS 8K P11 1.233 1.370 1.589 1.712 1.176 1.417 1.754 1.382 1.726 1.484
SS/NS 8K 1.190 1.347 1.400 1.709 1.181 1.265 1.652 1.874 1.852 1.497
SS/NS 8K PfA 1.144 1.198 1.272 1.385 1.097 1.211 1.460 1.303 1.451 1.280
SS/NS 8K PfB 1.149 1.205 1.285 1.398 1.100 1.221 1.476 1.343 1.469 1.294
Table 3: Average memory latency on IBS Mach traces

groff gs jpeg mpeg nroff gcc sdet verilog video Ultrix (avg)
CNV 8K 1.195 1.248 1.262 1.344 1.135 1.295 1.530 1.651 1.907 1.396
CNV 8K PfA 1.133 1.137 1.084 1.144 1.046 1.188 1.230 1.420 1.313 1.188
CNV 8K 64B 1.255 1.293 1.236 1.311 1.133 1.363 1.512 1.722 1.771 1.400
STS 8K R11 1.188 1.187 1.250 1.297 1.062 1.300 1.384 1.577 1.480 1.303
STS 8K P11 1.180 1.211 1.322 1.308 1.058 1.348 1.387 1.551 1.461 1.314
SS/NS 8K 1.166 1.215 1.236 1.317 1.127 1.255 1.482 1.574 1.836 1.356
SS/NS 8K PfA 1.116 1.111 1.075 1.141 1.047 1.184 1.221 1.453 1.288 1.182
SS/NS 8K PfB 1.119 1.107 1.070 1.132 1.049 1.193 1.230 1.512 1.246 1.184
Table 4: Average memory latency on IBS Ultrix traces

groff gs jpeg mpeg nroff gcc sdet verilog video Mach (avg)
CNV 8K 0.022 0.049 0.054 0.115 0.023 0.031 0.092 0.172 0.141 0.078
CNV 8K PfA 0.048 0.086 0.124 0.206 0.039 0.062 0.183 0.226 0.238 0.134
CNV 8K 64B 0.035 0.067 0.087 0.162 0.032 0.049 0.146 0.201 0.190 0.108
STS 8K R11 0.079 0.147 0.291 0.439 0.126 0.085 0.378 0.316 0.485 0.261
STS 8K P11 0.063 0.111 0.237 0.423 0.099 0.056 0.336 0.294 0.466 0.232
SS/NS 8K 0.021 0.049 0.054 0.114 0.023 0.031 0.092 0.171 0.140 0.077
SS/NS 8K PfA 0.023 0.051 0.060 0.119 0.024 0.033 0.098 0.177 0.143 0.081
SS/NS 8K PfB 0.022 0.050 0.059 0.118 0.024 0.032 0.095 0.174 0.142 0.079
Table 5: Average bus traffic on IBS Mach traces

 IEEE TCCA Newsletters, 1999. 6

groff gs jpeg mpeg nroff gcc sdet verilog video Ultrix (avg)
CNV 8K 0.021 0.032 0.041 0.056 0.017 0.037 0.071 0.097 0.144 0.057
CNV 8K PfA 0.044 0.053 0.058 0.091 0.026 0.064 0.113 0.177 0.200 0.092
CNV 8K 64B 0.031 0.040 0.045 0.067 0.021 0.052 0.086 0.142 0.170 0.073
STS 8K R11 0.066 0.081 0.119 0.159 0.052 0.082 0.252 0.300 0.341 0.161
STS 8K P11 0.051 0.062 0.099 0.128 0.045 0.055 0.213 0.272 0.323 0.139
SS/NS 8K 0.020 0.032 0.041 0.055 0.017 0.036 0.071 0.097 0.142 0.057
SS/NS 8K PfA 0.022 0.033 0.042 0.056 0.017 0.038 0.077 0.104 0.144 0.059
SS/NS 8K PfB 0.021 0.033 0.041 0.056 0.017 0.037 0.076 0.101 0.143 0.058
Table 6: Average bus traffic on IBS Ultrix traces

applu apsi fpppp hydro2 mgrid su2cor swim tomcat turb3d wave5 SPECfp(avg)
CNV 8K 2.038 2.225 1.124 4.261 1.860 2.804 5.085 3.523 1.532 3.875 2.833
CNV 8K PfA 1.251 1.983 1.111 1.054 1.040 1.112 4.680 2.569 1.409 2.680 1.889
CNV 8K 64B 1.654 2.310 1.189 3.056 1.541 2.147 7.731 4.279 1.602 4.191 2.970
SS/NS 8K 2.041 2.234 1.193 4.274 1.888 2.803 4.006 3.442 1.554 3.365 2.680
SS/NS 8K PfA 1.310 2.114 1.176 1.109 1.187 1.174 3.693 2.875 1.550 2.501 1.869
SS/NS 8K PfB 1.774 2.102 1.155 1.073 1.072 1.148 3.993 2.886 1.474 2.612 1.929
Table 7: Average memory latency on SPECfp traces

compr gcc go ijpeg li m88ks perl SPECint(avg)
CNV 8K 2.063 1.261 1.364 1.158 1.250 1.010 1.034 1.306
CNV 8K PfA 2.030 1.189 1.370 1.058 1.126 1.012 1.020 1.258
CNV 8K 64B 2.370 1.372 1.791 1.172 1.239 1.025 1.123 1.442
SS/NS 8K 1.974 1.216 1.254 1.191 1.253 1.007 1.000 1.271
SS/NS 8K PfA 1.950 1.171 1.238 1.106 1.195 1.007 1.000 1.238
SS/NS 8K PfB 1.948 1.179 1.237 1.107 1.195 1.007 1.000 1.239
Table 8: Average memory latency on SPECint traces

applu apsi fpppp hydro2 mgrid su2cor swim tomcat turb3d wave5 SPECfp(avg)
CNV 8K 0.226 0.222 0.001 0.669 0.186 0.380 0.274 0.308 0.098 0.272 0.264
CNV 8K PfA 0.234 0.514 0.002 0.673 0.192 0.405 0.856 0.463 0.270 0.573 0.418
CNV 8K 64B 0.229 0.372 0.002 0.670 0.190 0.386 0.276 0.308 0.156 0.279 0.287
SS/NS 8K 0.226 0.221 0.001 0.669 0.186 0.378 0.274 0.308 0.092 0.272 0.263
SS/NS 8K PfA 0.227 0.244 0.001 0.670 0.190 0.384 0.305 0.337 0.117 0.290 0.276
SS/NS 8K PfB 0.227 0.237 0.001 0.669 0.188 0.381 0.284 0.322 0.095 0.273 0.268
Table 9: Average bus traffic on SPECfp traces

compr gcc go ijpeg li m88ks perl SPECint(avg)
CNV 8K 0.202 0.026 0.018 0.021 0.041 0.0002 0.000 0.044
CNV 8K PfA 0.414 0.048 0.101 0.023 0.056 0.0023 0.000 0.092
CNV 8K 64B 0.399 0.038 0.034 0.021 0.048 0.0004 0.000 0.077
SS/NS 8K 0.200 0.026 0.018 0.021 0.041 0.0002 0.000 0.044
SS/NS 8K PfA 0.202 0.028 0.019 0.021 0.046 0.0004 0.000 0.045
SS/NS 8K PfB 0.200 0.027 0.019 0.021 0.044 0.0003 0.000 0.044
Table 10: Average bus traffic on SPECint traces

 IEEE TCCA Newsletters, 1999. 7

Conclusions
A simple method of detecting useful spatial locality is
proposed in this paper. This new method is tested by
incorporating it into a new split cache design, called the
Split Spatial/Non-Spatial cache (SS/NS). The average
memory latency of this design was found to be better
than that of a conventional cache of similar complexity,
and better than that of a previous Split Temporal/Spatial
split cache design. The new flag-based spatial locality
detection mechanism overdid problem of determining
counter thresholds present in STS cache. It was also
shown that prefetching does not significantly increase
bus traffic if prefetches are initiated only on access to
blocks that are marked as spatial by the flag-based
spatial locality detection mechanism. This finding may
have important applications in all situations where
memory or bus bandwidths are bottlenecks, particularly
in shared memory multiprocessors.

Bus traffic in SS/NS cache may be reduced even more if
secondary cache misses of non-spatial blocks fetch only

the required sub-blocks. Besides, caching only small
subblocks should significantly reduce false sharing in
shared memory systems. This may be achieved by
splitting the secondary cache, so the non-spatial
secondary subcache fetches smaller sub-blocks. Another
way is for the secondary cache to remain unified, but
with each sub-block having its own state bits, while the
tag is shared by the entire spatial block. In this way, the
secondary cache becomes sectored with one-word blocks
and four-word sectors. Exploration of these possibilities
remains the topic for future research.

As was mentioned before, temporal locality detection
similar to that in the NTS cache can be incorporated
into SS/NS using the same four bits that are used for
spatial locality detection, with only one additional bit
per spatial block. In that way, the cache should be able
to adapt to variations in both spatial and temporal
locality and splitting according to both temporal and
spatial locality can be done. This may lead to a primary
cache being split into three or even four subcaches and
it would be interesting to evaluate such caches.

�

���

�

���

�

���

�

0DFK �DYJ� 8OWUL[�DYJ� 63(&IS�DYJ� 63(&LQW�DYJ�

&19 �.

&19 �. 3I$

&19 �. ��%

676 �. 5��

676 �. 3��

66�16 �.

66�16 �. 3I$

66�16 �. 3I%

Figure 2: Average memory latency. Prefetching technique significantly reduces memory latency.

�

����

���

����

���

����

���

����

���

����

0DFK �DYJ� 8OWUL[�DYJ� 63(&IS�DYJ� 63(&LQW�DYJ�

&19 �.

&19 �. 3I$

&19 �. ��%

676 �. 5��

676 �. 3��

66�16 �.

66�16 �. 3I$

66�16 �. 3I%

Figure 3: Average bus traffic. Prefetching in the conventional cache hierarchy significantly increases bus traffic,
but causes only a negligible increase in bus traffic of the SS/NS cache.

 IEEE TCCA Newsletters, 1999. 8

Acknowledgments
The authors are thankful to their colleagues at the
University of Belgrade: Jelica Protiü� Aleksandar
Milenkoviü� DQG ,JRU ,NRGLQRYLü IRU WKH KHOS DQG

numerous sugestions during the work on this paper.

References
[Chan96] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F.

X. Schumacher, J. Zheng, “Design of the HP PA7200
CPU,” Hewlett-Packard Journal, February 1996, pp.
1-12.

[Gonzalez95] A. Gonzalez, C. Aliagas, and M. Valero, “A Data
Cache with Multiple Caching Strategies Tuned to
Different Types of Locality,“ Proceedings of the
International Conference on Supercomputing (ICS
’95), Barcelona, Spain, 1995, pp. 338-347.

[Johnson97a] T. L. Johnson and W. W. Hwu, “Run-time Adaptive
Cache Hierarchy Management via Reference
Analysis,” Proceedings of the 24th International
Symposium on Computer Architecture, Denver,
Colorado, June 1997.

[Johnson97b] T. L. Johnson, M. C. Merten, and W. W. Hwu, “Run-
time Spatial Locality Detection and Optimization,”
Proceedings of Micro-30, Research Triangle Park,
North Carolina, USA, December 1997.

[Milutinovic95] V. Milutinovic, "The STS Cache," University of
Belgrade Technical Report #35/95, Belgrade, Serbia,
Yugoslavia, January 1995.

[Milutinovic96a] V. Milutinovic, B. Markovic, M. Tomasevic, and M.
Tremblay, “The Split Temporal/Spatial Cache: Initial
Performance Analysis,” Proceedings of the SCIzzL-5,
Santa Clara, California, USA, March 1996, pp. 63-69.

[Milutinovic96b] V. Milutinovic, B. Markovic, M. Tomasevic, and M.
Tremblay, “The Split Temporal/Spatial Cache: A
Complexity Analysis,” Proceedings of the SCIzzL-6,
Santa Clara, California, USA, September 1996, pp. 89-
96.

[Prvulovic98] Prvulovic, M., Marinov D., Milutinovic V., "A
Performance Reevaluation of the Split
Temporal/Spatial Cache," Workshop Digest of the
PAID/ISCA-98, Barcelona, Spain, June 1998.

[Sanchez97] F. J. Sanchez, A. Gonzalez, and M. Valero, “Software
Management of Selective and Dual Data Caches,“
IEEE TCCA NEWSLETTERS, March 97, pp. 3-10.

[Sahuquillo99] Sahuquillo, J., Pont, A., “The Split Data Cache in
Multiprocessors Systems: An Initial Hit Ratio
Analysis,“ Proceedings of the 7th Euromicro
Workshop on Parallel and Distributed Prcessing,
Madeira, Portugal, February 1999.

[Reilly95] J. Reilly, “SPEC Describes SPEC95 Products And
Benchmarks,” SPEC newsletter, September 1995.

[Rivers96] J. A. Rivers and E. S. Davidson, “Reducing Conflicts
in Direct-mapped Caches with a Temporality Based
Design,” Proceedings of International Conference on
Parallel Processing, 1996.

[Tomasko97] M. Tomasko, S. Hadjiyiannis, and W. A. Najjar,
“Experimental Evaluation of Array Caches,“ IEEE
TCCA NEWSLETTERS, March 97, pp. 11-16.

[Tse98] J. Tse and A. J. Smith, “CPU Cache Prefetching:
Timing Evaluation of Hardware Implementations,”
IEEE Transactions on Computers, Vol. 47, No. 5,
May 1998.

[Tyson95] G. Tyson, M. Farrens, J. Matthews, and A. R.
Pleszkun, ``A modified approach to data cache
management,'' Proceedings of the 28th Annual
International Symposium on Microarchitecture,
December 1995, pp. 93--103.

[Uhlig95] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J.
Emer, “Instruction Fetching: Coping with Code Bloat,”
Proceedings of the 22nd International Symposium on
Computer Architecture, Santa Margherita Ligure,
Italy, June 1995, pp. 345-356.

