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Abstract—It is widely understood that most system downtime is acounted for by programming errors and administration time.

However, a growing body of work has indicated an increasing cause of downtime may stem from transient errors in computer system

hardware due to external factors, such as cosmic rays. This work indicates that moving to denser semiconductor technologies at lower

voltages has the potential to increase these transient errors. In this paper, we investigate the susceptibility of commodity operating

systems and applications on commodity PC processors to these soft-errors and we introduce ideas regarding the improved recovery

from these transient errors in software. Our results indicate that, for the Linux kernel and a Java virtual machine running sample

workloads, many errors are not activated, mostly due to overwriting. In addition, given current and upcoming microprocessor support,

our results indicate that those errors activated, which would normally lead to system reboot, need not be fatal to the system if software

knowledge is used for simple software recovery. Together, they indicate the benefits of simple memory soft error recovery handling in

commodity processors and software.

Index Terms—Soft errors, memory errors, commodity, operating systems, Java, recovery.
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1 INTRODUCTION

COMMODITY systems such as PC systems based on the
Intel IA-32 architecture running the Windows and

Linux operating systems account for the bulk of computer
system sales. As computers become more ubiquitous,
demand for better performance and higher availability
increases in cost-effective commodity systems. However
because of price pressures, current commodity systems have
focused on price/performance issues, giving availability less
attention. It is a common belief that software errors and
administration time are, and will continue to be, the most
probable cause of the loss of availability [13]. While such
failures are clearly commonplace, especially in desktop

environments, research has shown that certain transient
hardware errors, particularly inmemories, are also becoming
increasingly probable as technology improves [5], [32]. Since
such transient errors require system reboots that can take
several tens ofminutes ormore on large systems, these errors
can affect availability considerably.

Hardware errors can be classified as hard errors (faults)
or transient (soft) errors. Hard errors are those that require
replacement (or otherwise relinquished use) of a compo-
nent. These typically happen as a consequence of physical
damage to a component, e.g., by damage to connectors.
Transient (soft) errors are those that result in an invalid
state in the hardware that is correctable. For example, data
stored at a memory location may become corrupt, but
overwriting it will remove the invalid state. Such errors
may lie dormant for a significant time since they are only
detected by the system when the processor directly uses the
erroneous hardware or corrupt memory location. When an
error is touched by the hardware, it is referred to as Error
Activation, while activated errors which go undetected by
the hardware are called Silent Data Corruption. Such
hardware errors have been considered by mainframe
technology for years using expensive proprietary hardware
and software for detection and recovery [2], [26]. However,
in the field of commodity systems, it has not been cost-
effective to provide full hardware detection and redun-
dancy for recovery support to mask all errors.

Results over the last 20 years have shown that soft errors
due to cosmic rays and substrate alpha particles can cause
semiconductor transient errors inmemoryhardware [32]. For
example, it has been reported that a 1GB memory system
based on today’s 64Mbit DRAMs still has a potential
combined error rate of 3435 FIT (Failures In Time—failures
in 109 hours) when using Single Error Correct-Double Error
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Detect (SEC-DED) ECC [10]. Of these errors, soft-errors
account for 30 times (96.7 percent) the errors when compared
to hard errors. This is equivalent to around 300 reboots
resulting fromsoft errors on 10,000machines in oneyear, if all
the errors are activated and cause reboots. Based on Moore’s
law, both cache andDRAM sizes will grow significantly over
the next five years (to around 2Gbits per DRAM), indicating
the possibility for a large increase in error rates due to
shrinking cell sizes and reduced supply voltage.

The increasing prevalence of soft errors and their
recovery has received some attention in current and next-
generation commodity processor architectures. For exam-
ple, Intel’s IA-32 architecture has various levels of support
across processor implementations for error detection and
correction on certain buses and caches. In addition, the new
Intel/HP IA-64 architecture contains increased support for
the detection, correction, and reporting of software recovery
of soft errors at the processor level.

At current error rates and memory sizes, processor-only
recovery support may be sufficient. However, given the
potential for a high soft error rate, we would like to
understand the effect of those errors that are not masked by
hardware support. In doing so, this paper aims to
determine how frequently soft errors are activated by
commodity PC software using commodity operating
systems on commodity processors. In addition, given
improved error support, we aim to determine what
influence soft errors will have on commodity software
workloads and what the possibilities for recovery from
those soft errors are.

The rest of the paper is organized as follows: In Section 2,
we present our approach to investigating error suscept-
ibility and recovery on commodity processors. We then
describe our investigation into the influence of these errors
on a commodity operating system (Section 3) and a sample
application platform (Section 4). In Section 5, based on our
understanding, we analyze the probable effect of soft errors
on commodity systems with and without simple, improved
error handling. Section 6 presents work related to this
paper. In Section 7, we present the lessons learned from this
work and, in Section 8, we conclude the paper and propose
potential future work.

2 APPROACH

In a commodity system based on the IA-32 or IA-64
architectures, memory soft errors predominantly occur in
both the cache andmainmemories of a system.Dependingon
memory size, technology sensitivity to soft errors, and price
pressures, PC systems usually support at least parity
detection onmainmemory and ECC for larger caches. Single
bit errors can be effectively masked with error correction
support, however, as technology feature sizes shrink and
voltage levels drop the probability of multiple bit errors
increases. Depending on the protection used, price, and
technology types, the number of errors masked by this
protection will vary. But, ultimately, a number of soft errors
are not masked and may be activated by the software,
resulting in either detected errors or silent data corruption.

Determining the effect of soft-errors on a commodity
system is a difficult task due to their relative infrequency

and limited postmortem information. Past work has
reported the effect on availability of these errors from data
acquired from in the field failures; however, this informa-
tion typically comes from mainframe machines where some
level of postmortem information is available. Our approach
to this problem is to investigate the activation rate of
emulated soft errors (rather than total availability) for off-
the-shelf commodity systems and software. Based on this
approach, we can gain an understanding of how soft errors
are activated and, with some minor kernel modifications,
we can classify those errors by their usage and likely effect
on those commodity softwares and processors.

Based on this information, we would like to understand
the processor and system status at which the memory error
is activated. This is important because the error’s severity
on the software and, thus, the ability of the system software
to recover from the error is directly affected by what
software activates the error. We believe that the information
derived from these experiments will increase the under-
standing of whether and not to make software execution
platforms more robust to soft errors.

Soft-errors based on sources such as cosmic rays occur
uniformly in memory, although the size of the error may
vary due to multibit impacts. To mimic this occurence, our
approach is to insert emulated memory soft-errors uni-
formly distributed throughout memory and then determine
their activation rate. This approach does not stress-test
particular memory regions or system processing for errors
to fully understand the consequences of the error on
availability; other work covers this approach well. Instead,
we are able to determine the effect of the uniformly inserted
errors and their effect on the total system software (OS,
application software, etc.).

In this paper, we evaluate two common PC software
platforms; the operating system and Java virtual machine
platforms. Operating systems have the most scope for
performing recovery without affecting application code
because they are first to receive an error from the hardware
and are in total control of the hardware. However, some
errors cannot be handled by the operating system. In these
cases, the Java virtual machine’s abstraction may enable
additional application recovery.

2.1 Existing Commodity Error Handling

The effect of a soft error on software execution depends
predominantly on the processor’s support for error mask-
ing, handling, and reporting. In commodity processors such
as IA-32 and IA-64 architecture processors, a detected
memory soft error causes the system to raise a Machine
Check Architecture (MCA) exception to notify the operating
system of a serious error. However, because the hardware
has seen an uncorrectable error and because of commodity
price/performance pressures, this exception usually leaves
the processor in an undefined state requiring a system
reboot due to loss of containment of the error’s effects at the
hardware level.

A complete overview of the IA-32 or IA-64 MCA is
beyond the scope of this paper. In general, for IA-32
processors, while the exception leaves the processor in an
undefined state, the status of the processor concerning the
error is reported in a set of processor registers [17]. The
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IA-64 architecture extends support for soft errors in two
ways [16], [28]. First, additional hardware detection is
supported for processor implementation, such as providing
parity or ECC protection to the system bus and the three
on-chip caches. These provide good coverage of most
common errors while limiting cost. Second, the recover-
ability of machine-check exception handling has been
improved by providing several types of well-defined error
scenarios. This provides more information for potential
software containment of the error.

These processors report many types of errors as part of
the MCA. For memory errors, three pieces of information
are of interest: where the error activation occurred (both the
current instruction point and the erroneous memory
location), what action caused the error (e.g., read or write
access), and whether it occurred in main memory or in
cache. Based on these error cases, several opportunities
exist for simple error recovery. For example, a write access
to a soft error in main memory need not cause a fatal
exception since the error is being overwritten rather than
read. However, many architectures cause a cache read on a
write in order to read the data into cache for update. In
doing so, an error is consumed and signaled needlessly.
Alternatively, an error may occur in user memory during
application processing. Since the error is outside the kernel,
its integrity has not been affected, allowing an enhanced
kernel to simply kill the user process and continue.

Based on these possibilities, our approach is to under-
stand where errors occur and what operation was being
performed so that knowledge can be used to determine
whether some form of error recovery processing could
contain the error. This may lead to enhanced error recovery
in the kernel or an application platform to contain the data
corruption due to the error.

3 INFLUENCE OF SOFT ERRORS ON

A COMMODITY OS

To understand how activated errors affect the operating
system on commodity processors, we need to measure and
characterize soft errors with the following information:

. Was the processor reading or writing memory?
Depending on the processor implementation, errors
while writing versus reading memory may be
ignored since the content is overwritten.

. Was the processor executing kernel or user code? If
the error activation occurs while the processor is in
user mode, there may be an opportunity for
terminating the current thread or task and switching
to another one, thus avoiding bringing down the
system.

. Is the affected memory in user or kernel space? If
the processor is executing kernel code, but the
accessed memory is in user space, such as when
reading user data in a write system call or when
reading system call arguments, it may be possible to
modify the operating system to send a signal to the
corresponding user task and interrupt the system
call. Most operating systems are already prepared to
handle an invalid memory access for such transfers.

. What is the memory object type and what is the OS
state if the processor is executing kernel code?
Depending of the type of kernel memory and how
it is accessed (read/write), the recoverability of the
error can be determined from the state saved from
the error insertion.

3.1 Kernel Instrumentation and Methodology

Simply injecting errors at random memory locations is an
easy task. Determining if the error is activated and what the
effects are is more difficult. The error may be activated
without any visible effect, even though its future conse-
quences can be severe. For example, an activated error may
cause a reboot, requiring a file system integrity check taking
many minutes or hours for large systems. In the extreme
case where the kernel panics or halts, analyzing error
casualty “a posteriori” is complex. Restarting the system
during this analysis is often a long process that may require
some human intervention.

For soft-error investigation where a number of samples
are required, we feel the kernel panic analysis process is too
slow and difficult to gather enough samples. Instead, we
chose to adopt a nonintrusive approach of error activations
that would give us enough information to categorize the
memories usage and use this with human analysis to
determine the general affect on the underlying software. To
enable this hand analysis, we must modify the kernel to
capture the relevant state atmemory error activation time in a
nondestructive and nonintrusive fashion. For each activated
error, our instrumentation records the activation delay and
some error context, including affected memory type at
injection time, the affected memory type at activation time
(since memory may be reallocated), the access mode (read or
write), the execution mode (kernel or user), the interrupted
task’s ID, and the program counter. This information is used
under human analysis to understand how potentially fatal
each error would have been to the OS.

Note, because we are using a software injection
approach, we are only attempting to determine the software
affect of activated errors on the system, rather than measure
total availability of the systemware. In addition, using this
approach we are unable to measure activation due to no
process memory activity such as DMA transfers or virtual
memory lookups.

3.2 Error Injections

We performed our investigations on an IA-32 platform
using watch points to simulate memory errors. Similar to
break points for instructions, watch points are a means to
detect any type of memory access to a given virtual memory
location. A set of three debug registers in the processor
allows the detection of data read/write accesses or
instruction fetches at any given memory location. Given
that the watch point mechanism is virtual address driven,
one limitation is that physical memory that isn’t accessed
through a virtual mapping is ignored. In particular,
simulated errors in page tables (PTE) cannot be detected
during page translations nor can errors in I/O buffers
during DMA operations. Most platforms use a TLB cache to
minimize PTE lookups. I/O buffers usually contain user
data and errors activated in such a memory area are not
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considered fatal. This limitation shouldn’t significantly
impact the OS susceptibility.

The fault injector is organized as two components, a user
mode program and some newly written kernel code. The
user mode program is executed concurrently with the
workload. The user mode program randomly selects
physical addresses where to inject an error. Then, it
interfaces to our kernel injection component through a /proc
virtual file system interface to setup a watch point, called a
/proc/mfi. This interface is a convenient way to communicate
with the kernel without adding new system calls. If the
error is activated, the kernel component returns the error
context through the same interface. It will delete the watch
point once the error is activated or if some configurable
time-out expires. Finally, it computes the various statistics
required for our analysis. The watch point facility does not
allow more than one virtual address to be monitored
simultaneously. Therefore, we set up a time-out to detect
that the error has not been activated and inject a new error
at another random location.

The kernel component searches which virtual address
(kernel or user) maps into the physical address provided by
the user program. (We never detected multiple memory
mappings while running our experiments.) This virtual
address is process space dependent and must be searched
for each distinct task. This reverse PTE lookup is fairly
expensive and cannot be performed systematically for all
tasks or at each context switch. Instead, it is performed
when a task is first scheduled after the error was injected,
then the matching virtual address is cached in a task-
specific data structure. Additionally, the kernel intercepts
all virtual mapping requests in case the physical page
where the error was injected is about to be mapped. Three
watch points are initialized to detect read, write, and
instruction fetch on this virtual address. If a watch point
exception is raised, the kernel gathers the error context and
returns it to the user program. See Fig. 1 for a overview of
this nonintrusive soft-error emulation process.

To collect the largest sample set, a new error is injected as
soon as the previous one is activated or when the time-out
expires; therefore, injections are not strictly periodic. Over-
all, we injected one error every 50 seconds, with minimal
impact on the workload applications.

3.3 Memory Objects Classification

To enable human analysis of the activation point and
consequences of the recorded exceptions, we need a means
of classifying theusageof thatmemoryaswell asdetermining
where it is used. In order to classify memory usage, we chose
to breakdownmemoryusage into types ofmemory, basedon
the point at which it is allocated. This allows us to determine
whether the memory is used for file systems buffering, stack
space, etc., and, thus, categorize them for further analysis. To
obtain this memory type information, the Linux OS was
instrumented such that every byte of main memory be
classified. This is accomplished by modifying the memory
allocators (the buddy and Slab memory systems [3]) so that
they register the requestor’s return PC within the memory
object. Each distinct PC ismapped to a distinct memory type.
Given any kernel virtual address, the operating system’s
memory type may be retrieved either from the page
descriptor or the Slab header. The memory object type is
determined both at injection and activation time since the
physical memory may be reallocated in the meanwhile. This
allows the program function allocating the memory (either
the kernel or application) to be recorded as well as the
function activating the memory and then stored for analysis
on activation.

3.4 Error Severity Classification

We categorize each error into one of three simple error
severity classifications based on whether the error was in
kernel or user memory and whether the access was a read
or a write:

. Overwritten. The memory is accessed in write
mode. On many platforms, write access to an
erroneous location is not detected and can be
ignored. However, on some platforms, a write access
may be preceded by a read when the cache loads a
line, causing the processor to detect the error before
it can be overwritten.

. User Signalable. The memory is accessed in read
mode, but it belongs to a user (as opposed to kernel)
area. This applies whether or not the processor was
running in kernel or user mode. In these cases, the
state of a particular user program has become
corrupt, but the processor may allow the kernel to
continue operating. As a result, the kernel can signal
the user task and proceed with another one or
interrupt the system call. Depending on the proces-
sor, some memory error exceptions indicate that
processor error containment has been lost; these are
not considered to be user signalable.

. Kernel Fatal. The memory is accessed in read mode
and the location belongs to the kernel space. In
general, this is fatal because the kernel state is
corrupt. There may be cases where the error could be
ignored or surmounted, but this would require a
more thorough kernel analysis.

3.5 Experimental Setup

For our experimentation, we used a 500 MHz Pentium III
PC with 192 MB of memory running the Linux kernel
version 2.2. We used two workloads:
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. Workload 1: The host runs an Apache Web server
and repetitively recompiles the Linux kernel. A
single client (600 MHz Pentium III Windows NT)
connected over a 10 Mbit Ethernet link runs the
WebStone benchmark against the Apache server,
simulating 20 users. The network traffic is close to
saturation. For this workload, the real memory was
artificially reduced to 64 MB so that the memory
working set can be slightly larger than real memory
to induce some swap activity.

. Workload 2: The host runs mySQL server 4.0.12 and
iteratively executes the associated CPU bounded
benchmark suite. We didn’t limit memory as we did
for workload 1, leaving the Linux system with
10 percent of memory reported free. Another
difference is that there is no network traffic in this
workload. One characteristic of this version of
MySQL is its extremely efficient memory cache,
reducing the amount of I/O operations.

To collect enough performance data, we injected errors at

a much higher rate than found in a real system. Unlike a

real environment where errors persist in memory as long as

it is not activated, our simulator cannot monitor more than

one error at a time. Since the error may never be activated,

we need to impose a time-out. So, the injection rate is not a

fixed parameter, it is not uniform, and its value can only be

measured a posteriori. The time-out value is the only

configurable parameter.
We performed two sets of experiments. With the first

one, performed with workload 1 (first seven rows of

Table 1), we study how the activation and activation delay

evolve as a function of the error injection time-out. In this

experiment, the injection time-out varies from 10 seconds to

30 minutes. The second set of experiments, performed on

both workloads (last five rows of Table 1), allows us to

characterize the error severity and to observe the influence

of the workload. Here, the errors were injected at higher

rates and the experiments last longer.

Overall, across 12 distinct experiments, 8,624 error
injections were performed over a 110-hour period, resulting
in 1,774 activations. In the next sections, we analyze these
experiments with respect to: the activation rates, activations
delays, the influence of the time-out value and the work-
load, and the error severity.

3.6 Activation Rate and Activation Delay

Because of our need to use a time-out on memory injections,
our first analysis was to determine how activation delay
varies with the injection time-out. Absolute activation rates
are of less interest, but logic indicates that the larger the
time-out is, the greater the activation rate. With no time-out
(e.g., an infinite time-out value), the activation rate should
be close to 100 percent. Only close, since some memory
areas may never be accessed, such as unused kernel text
code (initialization, unused components). Fig. 2 shows that
the activation rate reaches 55 percent for a 120 second time-
out and 85 percent for a 30 minute time-out. This high
activation rate is the result of both a memory intensive
workload (as little as 4 percent free memory) and of
minimal memory fragmentation resulting from the use of
the slab allocator in the Linux kernel.

Fig. 3 reports the activation delay (elapsed time between
the injection and the activation). With a two minute time-out
value, 90 percent of the activated errors are activatedwithin a
minute. The average activation delay increases insignifi-
cantly for injection time-out values greater than fiveminutes.

3.7 Memory Distribution and Activation Rate

Related to this analysis, we also would like to understand
how activated errors are distributed by memory type to
determine their recoverability. Fig. 4 depicts the average
memory usage distribution while running workload 1. We
have categorized memory into 200 distinct memory object
types. Among the allocated memory (96 percent of total real
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memory), the top nine types account for 93 percent.
Seventy-five percent of the memory (48 MB) is dedicated
to user processes. For this workload, a total of 280 processes
are allocated. Excluding the user private objects (private as
opposed to shared with other tasks), the mapped files, and
the free memory, 21 percent of the memory belongs to
kernel objects.

In Fig. 5, we show three distinct injection and activation
distributions for four injection time-out value experiments.
The first distribution is the percentage of overall memory
used by each memory type. The second is the injection
distribution over the various memory types and the third
one is the distribution at the activation time. The figures
show that error injections are distributed across memory
object types according to their memory usage. This is no
surprise since the injector uses a uniform random generator
to compute the physical addresses. The activation distribu-
tion is not such a close fit; in particular, the user private
memory hit rate is unexpectedly high and the mapped file
hit rate is unexpectedly low. Two factors contribute to this:

. The task/thread creation rate for this workload is
high and the private data page lifetime is short.

Every byte of a freshly allocated private page is
cleared by the kernel whether or not it will be
entirely used by a task.

. The text (here classified as a mapped file) locality is
also high. The server tasks are repetitive. Only a
small fraction of the text pages are referenced. This
leads to low text hit rate.

Another important observation is that the injection time-
out value has little influence over the distributions or
activation rate per memory type at these time-out levels
since, while the absolute activation rate varies with timeout,
our activation rate per memory type is similar across
timeout values. This validates our experimental nonintru-
sive time-out-based approach mimics the activitations a real
kernel would see from memory soft errors.

3.8 Error Severity

Fig. 6 shows the overall result of our classification across the
two workloads. Overall, only 10 percent of the activated
errors are considered fatal to the system for our sample
workload. Most of this reduction is caused by 74 percent of
the error activations simply overwriting an existing error,
leaving 16 percent of the errors which have potential for
signaling the application before termination. This interest-
ing result follows from the common operation of many
software components such as stacks and virtual memory
pages, both of which are generally written (an intermediate
result or zeroed page, respectively) before they are read.

First, let us assume that write errors are silently ignored
by the hardware or that, if signaled, the error can be
continued and the OS may be restarted. Then, we could
ignore 74 percent of the activated errors. Given this
assumption, an unmodified Linux system would be affected
by only 26 percent of the activated errors. Second, the kernel
already has support for appropriately handling existing
user data errors (e.g., segmentation violations) by signaling
the relevant task. The same mechanism would allow us to
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signal applications when a read error activation occurs in
user space. With this error handling support and restartable
processor error exceptions, the system would only need to
panic for 10 percent of the errors.

Table 2 provides the activation rate and error severity
distribution for the two workloads and on a per time-out
basis. Our first observation is that time-out value has little
influence on the severity. The activation rate is higher for
the first workload since we artificially reduced the real
memory so that the entire memory range is used. Despite a
significant variation for the overwritten and user signal-able
errors, the fatal error proportions are close: 8 percent for
workload 1 and 13 percent for workload 2.

3.9 Potential OS Recovery and Containment

Our results show that up to 90 percent of memory errors can
be considered as nonfatal to the operating system. This
assumes that the operating system has been instrumented to
capture relevant information at error activation time and is
able to pinpoint the affected memory object type. This may
allow it to discard write mode errors and signal user
processes when errors occur in user memory space. While
this does impose extra kernel development, we were able to
apply thismodification to the Linux kernel in about oneman-
month. Given the Linux kernel size, this seems a reasonably
small implementation cost for the potential benefit.

The remaining 10 percent ismuchmoredifficult to handle.
Looking more closely at the error distribution in Fig. 5, we
observe that, apart from the nonkernel object types (user
private andmapped files), a number of kernel objects may be
altered without affecting the overall kernel availability:

. User page table entries—Some may be rebuilt; at
worst, the task can be signaled.

. Buffer cache—Nondirty blocks can be recovered
from disk or an I/O error may be raised.

. Kernel stacks—If locks can be unwound, in some
circumstances, the task may be destroyed.

. Network buffers—The data may be retransmitted, or
an I/O error can be raised.

. Kernel text—May be reloaded if the page-in code
path is not altered.

More generally, corruptions within logs or statistical
counters should not bring the system down.

However, thisdecrease in fatalitywill comeat ahigher cost
due to more complex modifications to the operating system
core. Fig. 7 outlines the major functions associated with
program counter when errors are activated in workload 1.
Further to this information, Table 3 provides the list of kernel
code routines affected by fatal read error activations with
workload 1. The most frequently affected are:

. ide_output_data—Used while writing to disk. This is
mostly a consequence of the compile tasks.

. statm_pgd_range—Collects the memory usage statis-
tics available through the /prof virtual file system.
We were running the top program simultaneously to
observe the memory usage.

. xirc2ps_interrupt—Processes network controller in-
terrupts. The network is close to saturation with the
Webstone benchmark.

. filemap_nopage—When a user task maps a shared
page as private, the page must be copied. This is
usually the case for initialized data sections of a
program. This memory is not considered as user
private. One option would consist of signaling all
tasks still mapping this page and discarding it for
each. The page would then be reloaded from disk
when the program is next scheduled.

. do_fork—The kernel duplicates a significant amount
of kernel data. Workload 1 induces a significant
amount of task creations since it continuously
compiles small files.

4 INFLUENCE OF SOFT ERRORS ON

APPLICATION SOFTWARE

System recovery is a complex problem that involves
participation from the hardware through to the application
software. We have seen that the operating system could be
extended with simple instrumentation to increase recover-
ability when it receives a memory error exception. However,
if the operating system determines that the error occurred in
application space, in order to avoid termination, the applica-
tion must consider recovery as well. The operating system
could be extended to signal the application that an error
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Fig. 6. Error severity classification.

TABLE 2
Influence of Workload on Error Activation and Severity



occurred, but recovery for the application is not necessarily
straightforward. The data corruption that caused the
exception may have affected an important data structure.
In addition, on commodity processors, the execution
activating the error is often not continuable after the
exception. Therefore, the application will either need to
consider recovery from such exceptions or the system will
need to have mechanisms to preserve application state in
order to provide recovery for the application.

In this section, we present initial investigations into
application susceptibility to soft errors. At the application
level, Java Virtual machines (JVM) and Java applications are
of particular interest to us due to the large garbage collected
heaps, themachine abstraction presented, and the integrated
exception mechanism. By presenting an abstraction between
the operating system and the applications, the virtual
machine simplifies application-level recovery by using
increased knowledge of the application’s status and seman-
tics, such as whether the error is in static or heap memory.

4.1 Influence on a Java VM

To determine how the JVM and its Java applications can
respond to soft errors and potentially detect silent data

corruption, we performed several investigations instru-
menting and adapting the open-source Kaffe VM. This
allowed us to examine its memory usage, to instrument it
for fault injection experiments, and to extend it to detect
silent data corruption. It is also a mature system, it has
reasonable performance, and it is widely used. For our
experiments, we used an IA-32 RedHat Linux 6.2 platform,
running Kaffe 1.0.5 in the “interpreter mode.”

We instrumented the Kaffe virtual machine to inject
memory errors into the data memory area and to record the
memory status. In a manner similar to the OS fault injector
described in Section 3.1, the interpreter loop is instrumen-
ted so that, after a certain number of byte codes have been
executed, the loop calls our error injection procedure to
inject a memory error.

In a Java VM, the data areas can be divided roughly into
two partitions, those allocated statically for the VM and
those allocated on the heap for Java objects. In each test set,
errors are injected into one of these data areas. When the
error is activated, we determine what data area the error
has hit, what type of object it is in, and we also inspect the
VM status to see whether it is activated by the garbage
collector. Kaffe uses the mark and sweep algorithm, which
makes this inspection fairly easy because, when the GC
runs, all of the other user threads are stopped.

To investigate the effects on some sample applications on
top of the JVM, we chose four benchmark applications
extracted from the SPEC JVM98 benchmark suites using the
medium data configuration—ten percent [29]. To represent
a range of memory uses, we chose a Java expert system
(SpecJVM98 name: _202_jess), a Java database (_209_db), a
Java compiler (_213_javac), and a Java parser generator
(_228_jack).

For our experiments, we injected 1,000 memory errors for
the four benchmarks in both static and dynamic memory
areas of the JVM. Figs. 8 and 9 show the results of our initial
investigations for the static and dynamic memory areas,
respectively. These results show that, for the static data
region, around 5-6 percent of injected errors cause applica-
tion errors (crashes or incorrect results) and around
2 percent of errors are activated but cause no adverse
result. However, the Java object heap shows a much higher
error activation rate between 16 percent and 63 percent
when causing no error and between 7 percent and
13 percent when causing application errors.

Themost interesting results show that there is a significant
difference in the error susceptibility of the two data areas,
especially that there is a large difference in the number of
errors that are injected and not activated. As can be seen from
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Fig. 7. Function associated with the program counter location when

errors were activated in kernal mode.

TABLE 3
PC Locations for Read Access Memory Error Activations

Occurring in Kernel Mode

Fig. 8. Error activation in the JVM’s static data.



Fig. 9, this seems to be because the Garbage Collector (GC)
activates a large number of those normally latent errors. This
stems from Kaffe’s mark and sweep garbage collector
strategy that touchesmost objects periodically, causing latent
errors to be uncovered. This may cvause an error on the GC
thread. However, the GC is designed to be easily restarted to
relieve load when memory is tight.

Interestingly, however, although most of the error
activation takes place in the garbage collector, relatively
few errors actually cause real problems (crashing the JVM,
for example). We believe the main reason for this is that the
garbage collector only uses certain data in the heap (e.g.,
object references) on its traversal, reducing its susceptibility
to the number of actual errors. By comparison, 56 percent of
static data error activation cause application errors, whereas
only 7 percent of the error activation in the GC cause
application errors.

4.2 Potential JVM Recovery and Containment

These results indicate that, similarly to the operating
system, a large number of errors are latent and never
detected while executing. However, it seems that applica-
tions that exhibit behavior similar to a mark and sweep
garbage collector are much more susceptible to uncovering
those normally latent errors. For example, an in-memory
database application transverses a large amount of memory
in order to produce each query result. However, it is
unclear whether the different search patterns of other
garbage collectors are similarly affected.

Results also indicate that, with a little extra application
knowledge, a large number of those detected errors need
not be fatal. For example, the garbage collector could be
modified to tolerate machine-check abort exceptions that
may occur during a heap sweep. Or, in the case of silent
data corruption, when errors are not detected by hardware,
the garbage collector could check the validity of object
references before use. In fact, most garbage collectors
already check object reference validity before proceeding
as part of their sweep to determine which data is an object
reference. This probably accounts for some of the garbage
collector’s existing tolerance to errors. Also, given the level
of abstraction offered by the JVM, there may be opportu-
nities for other forms of error handling, such as improved
exception handling and object checksums to detect silent

data corruption. Initial investigations into these ideas show
several interesting approaches [7].

5 ANALYSIS FOR COMMODITY SYSTEMS

At the beginning of this paper, we noted that it has been
reported that a 1GB memory system based on today’s
64Mbit DRAMs still has a potential combined unmasked
error rate of 3,435 FIT1 when using ECC [10]. Given our
investigation, it is interesting to consider: 1) Given our
activation rate evidence how many failures in time would
lead to a reboot? 2) Given our results for the recoverability
of errors, how can this error rate be improved?

For simplicity, let’s assume that all activated errors are
detected, which is quite common for an ECC-based system.
Sections 4.2 and 5.1 report similar worst-case error activa-
tion rates in the range of 11-37 percent, an average of
20 percent. Taking the worse case activation rate and our
1GB memory system, our experimental result would
indicate that the software would only need to reboot on a
ð3; 435� 0:20Þ ¼ 687FIT activated error rate.

Our analysis of the activated error reports indicates that,
given a small amount of modification to each piece of
software, not all errors need be fatal to the OS (reboot) or
application (restart). We would like to convert our under-
standing of the various software memory susceptibilities to
errors into an approximate visible error rate. The approx-
imate combined error rate for errors that are not masked by
the hardware or modified OS can be determined using the
following formula:

FatalErrorRate ¼ ðVHE �ARÞ � ðKMS þAMS þORÞ
VHE ¼ V isibleHardwareErrorRate

AR ¼ ActivationRate

KMS ¼ KernelErrorSusceptibility�KernelErrorFatality

AMS ¼ SignaledApplicationErrorSusceptibility�
ApplicationFatality

OR ¼ OverwriteRate�OverwriteFatality:

In Section 3.9, we indicate that only 10 percent need be
fatal to the operating system (KernelErrorSusceptibility),
around 74 percent of errors are overwritten (Overwrite-
Rate), and 16 percent of errors could be signaled to the
application (SignaledApplicationErrorSusceptibility). Given
our design goals to minimize the operating system
modifications, let’s assume KernelErrorFatality is 100 per-
cent. For high-level IA-32 and IA-64 processors, most forms
of data overwrite can be recovered from by the processor or
exception handler, so let’s assume OverwriteFatality is
0 percent. Our results from Section 4.2 show that
7-13 percent of JVM errors would be fatal to the JVM and
its application when signaled (ApplicationFatality). This
indicates that, with a little application knowledge, the
reboot error rate could be reduced to

ð3; 435� 0:20Þ � ðð0:1� 1:0Þ þ ð0:16� 0:13Þ þ ð0:74� 0:0ÞÞ;

or 82.9 FIT, a considerably smaller rate. This drop comes
predominantly from ignoring overwritten errors. However,
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Fig. 9. Error activation in the JVM’s heap region.

1. Note 97 percent of the referenced source error rate is accounted for by
soft errors. For simplicity, the remaining 3 percent is not taken into account
in these calculations.



if we assume an old IA-32 processor where overwrites are
fatal, this error rate remains at 591 FIT. In these situations,
when execution cannot be continued, our investigations
indicate that this may be improved by focused kernel
modifications. Since these numbers are error rates, we
cannot directly calculate a machine’s eventual availability
without determining the downtime for each error.

6 RELATED WORK

In 1979, Ziegler et al. at IBM Research proposed that cosmic
rays and alpha particles can cause semiconductor transient
errors in memory hardware [32]. Since this seminal
research, many others in the field of semiconductors have
reported other experiments verifying the result. Some
semiconductor research indicates that manufacturers are
managing to limit increases in soft error rates through
changes to their memory design and manufacturing
processes [5], [33]. Other research indicates the need for
consideration of soft errors more carefully in the longer
term [1], [10]. However, the general consensus is that soft
errors are likely to continue to play an important role in
computer system availability.

Techniques such as parity bits, Error Correction Codes
(ECC), and ChipKill [10] have been used in commodity main
memories, storage media, and interconnects. These technol-
ogies allow different levels of error detection and correction
on locations accessedby theprocessor.WhileECC techniques
reduce thenumberof errors, in thispaper,weare interested in
the effect on softwarewhen either onlyparity is usedor errors
are notmaskedbyECC.Webelieve that, as technology trends
increase the probability of memory soft errors, software
recovery techniquemay becomemore important. Since these
errors are not masked by hardware support, they cause the
severe Machine Check Architecture (MCA) exception which
typically results in a processor reset. These errors are a prime
candidate for increasing availability through software re-
covery techniques.

Much research has been undertaken into the influence of
failures on computer systems, as well as techniques to
improve hardware and software reliability. Probably closest
to the work of this paper has been the work on fault
injection, propagation, and error handling. The systems,
such as FERRARI [18], React [9], and Fine [19], have greatly
improved our understanding of hardware and software
faults that are difficult to catch and repeat. Hsueh et al. give
a good survey and comparison of different injection
methods [15]. Some work has been undertaken into under-
standing errors in COTS systems, including Linux and the
PowerPC CPU [11], [14], [21]. In the operating system work
[11], [14], the focus is on inserting faults in focused areas to
stress test the OS to evaluate potential corruption and effect
on availability. This work is complementary to our work
since it focuses on availability with faults rather than soft
error activation rates, both of which are required to
understand total system availability, while the COTS CPU
work [21] focused on inserting errors through out the
processor logic using a circuit fault injector, rather than
focusing on the external memory system as our work does.
Again, we feel this investigation is complementary to our
soft error activation rate experiments.

One approach to theproblemof soft errors is to use reliable
hardware through the use of redundancy. Typically, this

increased hardware reliability is only available in proprie-
tary servers, with specialized redundantly configured
hardware and critical software components, such as
processor pairs [2]. Examples include the IBM S/390
Parallel Sysplex [26], the Tandem NonStop Himalaya [2],
and the Stratus ftServer [22]. Cornell’s Hypervisor-based
fault tolerance system provides a software alternative using
multiple virtual machines to provide an n-1 fault-tolerant
system [4]. Another approach in multiple processor systems
is fault containment and recovery at a “node” granularity,
including cluster systems, and multicellular NUMA archi-
tectures, such as Hive [6].

Software reliability has been more difficult to achieve in
commodity software, even with extensive testing and
quality assurance [25]. Techniques such as recovery blocks
[12], checkpoints [13], techniques for failure transparency
[20], to name but a few, have greatly improved recovery. In
addition, a lot of work has been conducted in the context of
distributed systems providing tolerance with support such
as fail-over and distributed transactions [2], [13] rather than
increasing single system availability, which is the focus of
our work. Rio [8] takes a novel software-based approach to
fault containment for a fault-tolerant file cache by using
memory protection operations to protect against wild writes
to shared data structures.

However, commodity software fault recovery has not
evolved very far. Most popular operating systems support
some form of memory protection between units of execu-
tion to detect and prevent wild read/writes. But, most
commodity operating systems have not taken up software
reliability research in general and have not tackled
problems of memory errors. Instead, they typically rely on
failover solutions, such as Microsoft’s Wolfpack [27].

Part of the solution to the problem of soft errors is the
more widespread use of existing availability techniques to
more effectively mask errors throughout the system.
However, our approach is complimentary and attempts to
improve the understanding of the susceptibility and
recovery of commodity software to soft errors using simple
fault injection and exception handling techniques. Our goal
is to contribute to the existing work on the interaction of
errors with software activation and to propose simple
techniques that may help reduce the effect of soft errors.

7 LESSONS LEARNED

The following observations can be derived from our
experimental data and analysis:

. The effect of soft errors on a modified operating
system may be small. For our sample workload, we
measured that 90 percent of memory errors need not
be fatal to the operating system’s execution.

. Large numbers of activations are overwritten. This
stems from the write before read use of most
memory locations. This is due to page (and object)
clearing for security and semantic reasons.

. Kernel mode read accesses to user data only account
for a small number of accesses most of which are
write accesses. In addition, kernel access to kernel
data only accounts for a small number of memory
access. This indicates that recovery is still possible
when execution cannot be continued after an MCA
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exception if processors ignore overwritten errors
since user processes may be signaled or terminated
in all other situations.

. For the Kaffe JVM and sample Java applications
running on it, the memory errors in the object heap
have a higher error activation rate and susceptibility
rate than those in the static data area.

. A large portion of heap error activation is caused by
the garbage collector (up to 75 percent). But, this
activation causes fewer application errors than other
sources of activation (7 percent versus 56 percent).

Adding a small amount of knowledge about the
operating system and application can reduce the need for
reboots by a significant fraction (down to 10 percent for an
operating system and down to 15 percent for Kaffe in our
initial experiments). While these are only initial results, they
do indicate that simple forms of error handling and
software recovery can noticeably benefit system availability.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have described how memory soft errors

have become an increasing cause of failures in modern

systems. However, commodity recovery support from these

errors is limited because of price pressures on these

systems. While semiconductor researchers try to limit the

causes of soft errors on systems, the consensus is that these

errors will continue to effect system availability.

Current and future commodity processor implementa-

tions are begining to have increased support for soft errors

signalling. Assuming this improved support, we have

investigated the effect of soft errors on commodity software.

In doing so, we have gained an understanding of the

correlation between soft errors and the reboots they can

potentially cause.

Our investigation into the susceptibility of both the

Linux kernel and Kaffe Java virtual machine indicate that

many errors are not necessarily activated by commodity

software. In addition, despite the potential data corruption

that can occur, with simple instrumentation of the Linux

kernel, we believe only 10 percent of memory errors

actually need to be fatal for our sample workload. For the

virtual machine, a large number of errors are activated by

the heap garbage collector that need not cause a fatal error

to the Java application. Together, these results indicate that,

with improved processor support and a little application

knowledge, few of the activated soft errors need to be fatal

to the system, especially due to overwritten errors.

Recently, similar observations to those made here have

lead some high-end commodity chipsets to include memory

scrubbing support to take advantage of the overwritting to

minimize errors are masked by hardware.
Our results are only preliminary and the interaction

between hardware soft errors and the software that they
affect is a complex one. Therefore, future research on other
commodity software and systems would greatly benefit our
work. In addition, experiments run on real-world, possibly
IA-64-based hardware, would help further validate our
results and perhaps improve the possibility of running with
real work example workloads.
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