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Abstract

Modern systems are getting more powerful and using larger memories. However, except at the very high end systems, much less
attention is being paid to high availability. This is particularly the case for transient errors that typically take the whole system
down. We believe that this situation can be improved by addressing memory failures at all levels of system. If we can handle the
memory errors at the application level, we can bring mainframe-class availability closer to commodity systems.

In this work we investigate memory susceptibility of a JVM (Kaffe) and four Java benchmark applications by fault injection exper-
iments. We then implement a prototype for detecting silent data corruptions in the JVM and evaluate its effectiveness. We find that
the JVM’s heap area has higher memory error susceptibility than its static data area. Our prototype implementation for detecting
silent data corruption can detect up to 39% of all JVM and application errors caused by memory errors. By using such techniques
we propose that commodity systems can be made much more robust and error-prone to transient errors.
1 Introduction

Demand for high performance and availability of
commodity computers is increasing with the ubiq-
uitous use of computers and the Internet services
which serve them. While commodity systems are
tackling the performance issues, availability has
received less attention. It is a common belief that
software errors and administration time are, and
will continue to be, the most probable cause of loss
of availability. While such failures are clearly com-
monplace, especially in desktop environments, it is
believed that certain other hardware errors are also
becoming more probable.

Hardware errors can be classified as hard errors
and transient (soft) errors. Hard errors are those
that require replacement (or otherwise relinquished
use) of memory resource. These typically happen
as a consequence of physical damage of the mem-
ory chips, e.g. by damage to connectors. Transient
errors are those that result in an error in the mem-
ory content, but once overwritten, the same mem-
ory areas can be re-used. Ziegler et al. [19, 22]
have shown that factors such as increased technol-
ogy density and reduced supply voltage will lead to
increased transient errors in CMOS memory due to
the effects of cosmic rays. Tandem [19] indicates
that such errors also apply to processor cores and
on-chip caches at modern die sizes/voltage levels.

Although the increasing application of Error Cor-
rection Codes (ECC) can significantly reduce the
probability of these transient errors, increasing
speeds, denser technology, and lower voltages
increase the possibility of these errors becoming
significant in future systems. Even if ECC protec-
tion is used, there is still a possibility of multiple
bit errors that escape the scope of the protection.
When this occurs values in random memory loca-
tions are corrupted, leaving the application to use a
potentially incorrect value when used on execu-
tion, this is called “silent data corruption”. Typical
examples are transient errors on the processor reg-
isters, ALU, multiple-bit memory errors, and simi-
lar. In some of the most promising applications of
Java technologies, such as embedded systems, no
parity or ECC protection is used, allowing more of
these errors to be exposed to the system.

In current commodity systems, there is little con-
sideration for transient memory errors. For exam-
ple, in most systems based on the IA-32
architecture, when a transient memory error hap-
pens the CPU simply enters a Machine Check
Abort (MCA) exception from which the OS can
only panic or reboot.

However, in the new IA-64 architecture, there is
increased scope for useful MCA handling. At the
time of the MCA exception, the CPU can provide



much more information about the current CPU sta-
tus and can notify the operating system to handle
the exception. This ability allows new opportuni-
ties for future systems to recover more gracefully
from memory errors.

Existing research [12] has outlined the opportunity
of memory error recovery with this increased hard-
ware support. However, the whole system recover-
ability is a complex problem that involves
participation at each level from the hardware to the
application software. Using this research, the oper-
ating system can be extended to increase recover-
ability when it receives a memory error exception.
If it finds the error happens in the Java virtual
machine or the application, it is possible it can
deliver the error exception to the virtual machine
for further processing (see Figure 1).

At the application level, the JVM and Java applica-
tion is of particular interest due to the large garbage
collected heap, machine abstract presented, and the
integral exception mechanisms.

Large garbage-collected heaps present a sweet-spot
for this research, since the garbage collector itself
may uncover more errors as part of the heap sweep
during collection. They are also usually larger than
explicitly allocated heaps, thereby increasing the
probability of error during this sweep.

By presenting an abstraction between the operating
system and the applications, the virtual machine
makes application level recovery simpler. Since,
the virtual machine has increased details of the
application’s status and semantics, such as memory
usage, improve the chance of recovery.

Java’s integral exception handling allows applica-
tions to be written that are memory error aware
[12] by trapping new exceptions. If the virtual
machine can isolate the error solely to the applica-
tion, it can generate these exceptions and thus
allow the application to handle the memory error
gracefully.

Memory failure recoverability is a complex prob-
lem. This paper tries to identify the memory error
susceptibility in the Java virtual machine and Java
applications as a first step to tackle this potential
problem. The major contributions in this paper
include: quantifying the memory error consump-
tion and susceptibility rate in the Kaffe virtual
machine and Java applications; and, evaluation of
extensions to the Kaffe virtual machine to detect
silent data corruptions.

The rest of the paper is organized in the following
manner. In Section 2, the paper outlines related
work to the problem. Section 3 describes the prob-
lems that we are addressing. The methodology of
the fault injection experiment and the method for
detecting silent data corruptions are described in
Section 4. Section 5 presents the experimental
results. Lessons learned are presented in Section 6.
The paper ends with conclusions and recommenda-
tions for future work.

2 Related Work

The effect and trends for soft-errors were first
reported by Ziegler et al. [19, 22] based on field
and experimental evidence that alpha particles and
cosmic rays were the source of several random sys-
tem failures. Since this time, soft-errors have
become more of a concern, because semiconductor
susceptibility to these particles increases with den-
sity increases and voltage drops.

Availability in computer systems is determined by
hardware and software reliability. Hardware reli-
ability has traditionally existed only in proprietary
servers, with specialized redundantly configured
hardware and critical software components, possi-
bly with support for processor pairs [2], e.g. IBM
S/390 Parallel Sysplex [15] and Tandem NonStop
Himalaya [5].

Figure 1 Propagating Memory Errors. Memory errors are
detected by lower layers and either corrected or propagated to
higher levels of the systems, up to applications
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Software reliability has been more difficult to
achieve in commodity software even with exten-
sive testing and quality assurance [13, 14]. Com-
modity software fault recovery has not evolved too
far at this time. Most operating systems support
some form of memory protection between units of
execution to detect and prevent wild read/writes.
But most commodity operating systems have not
tackled problems of memory errors themselves or
taken up software reliability research in general.
Examples include Windows 2000 and Linux. They
typically rely on failover solutions, such as Wolf-
pack by Microsoft [16] and High-Availability
Linux projects [20].

A lot of work has been undertaken in the fault-tol-
erant community regarding the problems of reli-
ability and its recovery in software [3, 7, 11]. These
include techniques such as checkpointing [7] and
backward error recovery [3]. A lot of this work has
been conducted in the context of distributed sys-
tems rather than in single systems. There are also
techniques for efficient recoverable software com-
ponents, e.g. RIO file cache [4], and Recoverable
Virtual Memory (RVM) [17].

The Fine [10] project uses fault injection technique
to study the fault tolerance of the UNIX system.
Fine is a set of experimental tools capable of inject-
ing hardware induced software errors and software
errors into the UNIX kernel and tracing the execu-
tion flow and kernel’s key variables. Instead, our
fault injection work operates at the application
level and using the debugger tool – ptrace – for
tracing the application’s behavior.

A few pieces of research have attempted to quan-
tify the absolute number of errors that would be
seen in particular configurations [21, 19, 6]. For
example, it is estimated that a 1Gb memory system
based on 64Mbit DRAMs still has a combined visi-
ble error rate of 3435 FIT when using Single Error
Correct-Double Error Detect (SEC-DED) ECC [6].
This is equivalent to around 900 errors in 10000
machines in 3 years. Tandem [19] estimate a typi-
cal processor’s silicon can have a soft-error rate of
4000 FIT, of which approximately 50% will affect
processor logic and 50% the large on-chip cache.
Due to increasing speeds, denser technology, and
lower voltages, such errors are likely to become

more probable than other single hardware compo-
nent failures.

Most recently work at HP Labs [12] has under-
taken further research into the future trends of
these error rates, their repercussions on the proces-
sor support, operating system handling/recovery ,
and working towards application recoverability.
The work in this paper was undertaken as part of
this work at HP.

3 JVM and Java Applications
Memory Error Susceptibility

In a system that has not enough ECC hardware or
multiple-bit error happens, transient memory errors
can be exposed to the software system. In addition,
silent data corruption can not be caught by ECC (it
typically happens on the hardware that is not pro-
tected by ECC) and hence needs to be handled in
an application-specific way. In this paper, we con-
centrate our effort on those corruptions that happen
in the application's data area. The errors in the ker-
nel area are beyond the scope of this study and are
addressed elsewhere [12].

Suppose a transient error happens on a word inside
an application's data area, the error may or may not
be consumed (accessed) by the application. If the
error is consumed, the error may or may not even-
tually lead to an application error. For example,
let's suppose an error is injected to an ID string
array so that one ID is changed unexpectedly. If
this ID is never matched in a search sometime later,
the error won't lead to visible application errors.

In this paper, we call the application access of a
memory soft error the error consumption. If the
error consumption eventually leads the application
to crash or output a wrong result, we say that this
error causes an application error. The application
susceptibility to errors is related to this data area.

Studying the error consumption and susceptibility
of applications has many valuable benefits. Most
of all, it lets us understand the application behavior
under the silent data corruption so that we can
design an efficient software method to detect silent
data corruption. Since it's unfeasible to detect all of
the errors, this study focuses on data areas most
3



susceptible to memory errors. The rest of this sec-
tion defines the terms we used in the paper and
describes the environment we used for experi-
ments.

3.1 Memory Error Susceptibility

In this paper, we define the memory consumption
rate (Rconsumption_rate) as the ratio of number of
errors consumed (Nerror_consumed) versus the number
of memory errors (Nmemory_errors), i.e.,

Rconsumption_rate = Nerror_consumed / Nmemory_errors

This equates to portion of the total error rate which
are actually seen by the application, since only
errors in those memory locations accessed are
noticed. The consumption rate is always smaller
than one. Thus our definition of consumption rate
is the upper bound in errors seen by the execution
in a real situation. For simplification, in this paper
we assume a memory error persists until it is con-
sumed or the application exits. This is necessary
since some high-end operating systems use a mem-
ory scrubber to pass over physical memory remov-
ing any correctable errors if finds. In the presence
of ECC memory, the memory scrubber can clear all
correctable errors that exists in the memory.

The memory susceptibility (Ssusceptibility) for a mem-
ory area is defined as the ratio of actual application
errors (Nerrors_in_application) divided by the number of
memory errors (same as in previous formula), i.e.,

Ssusceptibility = Nerrors_in_application / Nmemory_errors

Application errors are those that either cause an
application crash or execution to return an errone-
ous result. Verification of the latter is performed by
comparing the result against a known correct
result. In this paper, we assume that memory errors
are distributed uniformly in the application’s total
virtual memory area. Since memory errors affect
physical memory this is equivalent to assuming the
working set fits into physical memory.

3.2 JVM and Java Applications
Memory Error Susceptibility

In a Java virtual machine, the data area can be
divided roughly into two partitions, those allocated
statically for the virtual machine (VM) and those
allocated on the heap for Java objects. We want to
identify the error susceptibility of these two differ-
ent memory areas to guide our future recovery
studies. For errors in the heap, we also want to
know how the susceptibility varies with different
heap object types.

One feature of the JVM is that unused Java objects
are not freed explicitly by the application, rather
they are collected and freed by the garbage collec-
tor. How the garbage collector (GC) consumes the
memory errors is also interesting to us.

Since silent data corruption may not be detected by
the hardware solutions, we need to design a soft-
ware solution to detect these errors. We propose a
simple detection scheme by checksumming the
heap objects with evaluation of its efficiency by
fault injection.

3.3 Kaffe Virtual Machine

Kaffe became our choice because it is an open
source package that allows us to get its source code
and extend it freely. Having its source code allows
us to examine its memory usage, to instrument it
for fault injection experiments, and to extend it to
detect silent data corruption. It is also a mature sys-
tem and has reasonable performance, and is widely
used.

The operating system we use is Redhat Linux 6.2.
We use Kaffe 1.0.5 with the “interpreter mode”
throughout our studies. Since our work only
assumes an IA-64 like error handling architecture
and we don’t have Kaffe on IA-64 yet, we use a
Pentium-III platform of the IA-32 architecture
instead of the IA-64 architecture. Where appropri-
ate we shall point out the implications of using one
or the other processor.
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4 Experiment Methodology

In this section, we first explain the method and
setup of the fault injection experiment. Next we
describe our prototype implementation for detect-
ing silent data corruptions.

4.1 Fault Injection Experiment Method

Our basic experiment method is to inject errors into
the application data area, track the error consump-
tion, and monitor the application behavior after the
consumption. We use the ptrace system call to
trace the JVM execution and manipulate the debug
registers to set a data breakpoint to track the error
data consumption.

Data Breakpoints

In the IA32 architecture, there are eight debugging
registers we can use to set data breakpoints. They
are identified as DR0 – DR7. To our interest here,
DR6 is the breakpoint status register, DR7 is the
debug control register, DR0 – DR3 are used to set
the addresses of breakpoints.

For each breakpoint address, IA32 architecture
allows the user to set it for breaking on execution,
breaking on writes, or breaking on read-write. In
this experiment, we set the CPU to break on read-
write of the injected-error address. At each time,
we only set one address. This method has the limi-
tation that we can’t figure out whether the access is
a read or a write. We can overcome this limitation
by duplicating the breakpoint and setting one for
read-write and the another for write. But we are
unable to get the correct debugging status register
value from the Linux system. Therefore we don’t
know which breakpoint fires. It may be possible to
overcome this limitation in the future.

Using ptrace

Debug registers are privileged CPU resources and
a user application can’t read and write them
directly. Fortunately Linux provides the ptrace sys-
tem call for accessing these registers from user pro-
cesses.

Normally, a ptrace system call is used in the fol-
lowing way. The debug process uses fork to create
a child process. On return from the fork, the child
process calls ptrace with the parameter
TRACEME to inform the parent process that it
wants to be traced. The child process then calls
execl or other similar functions to execute the
debugged application. On the other side, the parent
process calls a wait on the return from the fork.
When the child process first calls execl, or gener-
ates some uncaught signals, the parent process
wakes up from the previous wait. After being
woken up, the parent process can examine and set
the child process status by using the ptrace call.

The way we use ptrace is illustrated in Figure 2.
We modified Kaffe executive to start the watch
(monitor) process first. The watch process uses
fork to create and run the VM. At certain points of
VM execution, a memory error is generated and a
SIGTRAP is raised to inform the parent – the
watch process – to set a data breakpoint on the
error address. On receiving this signal, the watch
process peeks at the child process data (since they
have the same address space layout, we can get
child’s data easily) and sets the appropriate data
breakpoint.

After the child process resumes, it may consume or
not consume the injected error. If the error is con-
sumed, the child process traps and the parent
wakes from this trap signal. The consumption is
recorded and the breakpoint is cleared. Whenever
the child process exits normally or incorrectly, the
watch process is signaled and the status is

watch process starts

fork()

continue

set watch point

receives trap signal
record and clear data

record exit status and return

set trace_me flags

start Kaffe

randomly generate error
raise a signal

data consumed

exit

Figure 2 Method for tracing error consumption using
ptrace.
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recorded. If the child process exits normally, we
further check whether its output is correct.

Generating and Recording Memory Errors

We instrument the Kaffe virtual machine to inject
memory errors into the data memory area and to
record the memory status. Since we are using the
interpreter mode, the virtual machine executes a
loop interpreting each byte code. Code is instru-
mented so that after a certain number of byte codes
have been executed, the loop calls our error injec-
tion procedure to generate a memory error.

Each Memory error is injected into one of two data
memory areas:

• the static memory area of the VM, and

• the object heap.

In each test set, errors are injected into one of the
above areas. Each time, a byte is randomly chosen
from the specified area and the byte bits are
flipped.

If the error is injected into the object heap, we
record the type information of the object where the
byte is located, the information we record includes
the object type, size, base address.

Now, the VM stores the error address into a global
variable and raises a SYSTRAP signal to inform
the watch process that a memory error has been
generated. After receiving this signal, the watch
process peeks at the global variable to get the error
address and set a data breakpoint at the address.
Then the VM is allowed to continue.

When the error is consumed, we also inspect the
VM status to see whether it is consumed by the
garbage collector. The Kaffe uses the mark and
sweep algorithm which makes this inspection fairly
easy; when the GC is running all of other user
threads are stopped.

4.2 Detecting Silent Data Corruption

Based on our experimental results on error con-
sumption, we have implemented a prototype solu-

tion for detecting silent data corruption for the
Kaffe virtual machine. We believe the method can
be applied to other virtual machine implementa-
tions as well.

The basic idea is that in a pure Java application
every Java object or array is accessed through a
determined group of bytecode operations, such as
getfield and putfield. For each of these bytecodes,
we add code to do a checksum computation
according to their functionality. The heap object
management can be modified to store the check-
sum results.

Space For Checksum

Instead of directly extending Kaffe’s Object data
structure to have extra fields for storing checksum
data, we extend the heap memory management
data structure to have more bytes for each memory
block. This conforms to the way that Kaffe man-
ages the object status.

In the Kaffe heap memory management module,
objects are classified into small objects and big
objects. Small objects are generally objects with
sizes smaller than the system page size. Large
objects are objects needing more than one page.

Small objects are grouped into pages. Each page is
divided into many same size blocks. Each block is
assigned to one object. At the head of the page,
there is a meta-data structure for blocks inside the
page, such as block size, garbage collection status
and object type. Two bytes are added for each
small object. One byte for bit pattern checksum,
another for checksum validity.

For big objects and arrays, it is not desirable to
have only one checksum data for efficiency rea-
sons. For example, when one byte in a one-mega-
byte array is accessed, we don’t want to compute a
checksum for the whole one-mega byte data. Thus,
we divide the object into fixed size small blocks
and the checksum is computed on these small
blocks. Although we add extra memory overhead,
the checksum computing is much more efficient
for large objects or arrays.
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Checksum Computing

In our implementation, the checksum is computed
by xoring all bytes in the object rather than adding
short values together as in TCP/IP.

When a Java application is running, an object can
only be accessed through the following ways:

• It’s created by using new operator,

• one of its field is read by the bytecode getfield
(static field access excluded, see explanation
below),

• an entry in an array is read by bytecodes iaload,
laload, faload, daload, caload, saload, baload and
aaload,

• the object is walked by garbage collector,

• one field is written by the bytecode putfield (static
field write excluded again),

• an entry in an array is written by bytecodes ias-
tore, lastore, fastore, dastore, castore, sastore,
bastore and aastore,

• one part of an array is copied by Sys-
tem.array_copy,

• the object or array is operated by some native
functions.

in Kaffe, static fields are stored with the class
objects(this makes

sense, static fields are global variables of the class).
If we want to

include them in checksum protecting, we have to
checksum the class object.

But other fields of the class objects are manipu-
lated by the VM in many

places, it's hard to instrument all of them. We
instrumented Kaffe to deal with these situations.
When an object field or an array entry is read by
some bytecode, we compute the checksum of the
read value with the other part of the object or array
and compare it with the checksum we have previ-
ously stored in the object’s block meta data struc-
ture. When an object is updated by bytecode, we
update its checksum value.

5 Experiment Results

In this section, we present our experiment results
for error consumption and silent data corruption. In
our experiments, we assume a uniform memory
error probability over the whole memory area. For
the convenience of the experiments, we inject the
same number of errors in the two experiment sets.

The benchmark applications we used in the experi-
ments are extracted form SPEC JVM98 benchmark
suits [18]. The four applications we used are:

• _202_jess, a java expert system,
• _209_db, a java database,

• _213_javac, a java compiler, and
• _228_jack, a java parser generator.

In all of the experiments we conducted, we use the
medium data configuration – ten percent. With this
is data size, we can have the experiments finished
in reasonable time and the garbage collector is
forced to run.

For both static and dynamic areas we inject 1000
memory errors for the four benchmarks. For the
dynamic area experiments, the benchmarks are run
with the error detection mechanism so that we can
record which error consumptions have been
detected. The total running time for the experi-
ments took about 70 hours on a Pentinum III
500MHZ platform. The total code lines for error
injection and tracing is bout 470 lines and the code
lines for memory error detection is about 780 lines.

5.1 Memory Error Consumption

This experiment is divided into two groups. In one
group we inject memory errors into the VM’s static
memory area; in the other group, we inject errors
into the object heap. These two areas are used dif-
ferently by the Kaffe virtual machine. The static
data area includes the global variables and con-
stants. Intuitively, errors in this area are much more
likely to cause real problems in the Java applica-
tion once they are consumed. On the other hand, a
Java application’s data objects are stored on the
heap and the heap is walked by the garbage collec-
tor when it is started. The heap can have a higher
7



error consumption rate than static data area due to
the factor of garbage collection.

Static Memory

The result for injecting errors into static data area is
summarized in Figure 3. In the graph, gray part
comprises those errors that are not consumed by
the application even though they are injected; dark-
gray part comprises errors that are consumed by
the application but don't cause any application
errors, i.e. application accessed the erroneous data
but it still executed correctly; white part illustrates
number of application errors, in this case applica-
tion either crashes or gives a wrong result.

The susceptibility rates are listed in Table 1. The
size of this data area is about 350KB. We can see
from the graph that all of the benchmark applica-
tions exhibit similar behavior. Their error con-
sumption rate is about 6% to 7% with an average of
6.7%. The average memory susceptibility rate is
about 5.5%. Among all of the errors consumed,
81% of them cause errors in the applications. As
we mentioned before, our tools can’t differentiated
between write consumption or read consumption
here. This means that almost all of the read con-
sumption causes a real problem in the application.

Object Heap

In the next experiment, we inject errors into the
object heap. In Kaffe, the heap size grows dynami-
cally as the application’s need grows. In our exper-

iments, we inject errors into the range of virtual
address the heap occupies. Their heap size varies
from 5243KB to 8397KB in the experiment.

The result is summarized in Figure 4 and the sus-
ceptibility rates are listed in Table 3. The three
cases (application error, consumed but no error,
and injected but not consumed) have the same
meaning as in Figure 3.

The first observation we can draw is that the heap
has a much higher error consumption rate. For
example Jack has a 75% error consumption rate in
the heap versus 6.7% in the static data area. But a
closer look revealed that most consumption come
from the garbage collector. Kaffe uses mark and
sweep strategies for garbage collection. When GC
is started, it virtually touches almost every object
in the heap. It’s no wonder it consumes so many
errors.

If we don’t count those errors consumed in the GC,
the error consumption rate is about 9% to 22%,
which is still higher than the static data area.

It should also be noted that the susceptibility also
depends on memory region size. However, if we
assume a uniform probablility error rate in the
memory area, since the heap size is much bigger
than the static area, we can conclude that the heap
is much more memory susceptible of the two.

Although most of the consumption takes place in
the garbage collector, relatively fewer of them
actually cause real problems. The first reason is
that the garbage collector only cares about object’s
reference field. It won’t use other types of fields for
computations. For object reference, it first checks
whether it is valid. This masks out most of the pos-
sible errors. On the average, only 7% of the error
consumption in GC caused application errors. In

Static Data Jess DB Javac Jack Avrg

Susceptibility 6.2% 5.4% 5.4% 5.1% 5.5%

Table 1 Susceptibility in Static Data

Figure 3 Error consumption in JVM’s static data region.
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Heap Size Jess DB Javac Jack

Minimum
Heap Size

5243KB 7348KB 5243KB 5243KB

Maximum
Heap Size

5243KB 8397KB 7000KB 7000KB

Table 2 Heap Size Used in Error Injection
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comparison, 56% of static data error consumption
cause application errors.

To further understand the source of application
errors, we also collect the object types for the
object into which each error is injected. Here we
show the result for Javac as an example in
Figure 5. We distinguish objects, primitive arrays,
reference arrays, and areas that is not used. Exam-
ple of the latter is areas that do not belong to any
JVM. object. For example, an object has been freed
by the garbage collector, or a block inside a page
that has not been allocated to any object. In
Figure 5 the errors injected into not-used part,
never caused application error. However, they may
be consumed, by overwriting.

From the graph we can see that although only less
than 20% errors injected are in normal (created
with new) objects, they are much more likely to be
consumed and cause application errors – more than
60% application errors are caused by these objects.

We can also see that many errors are injected into
primitive arrays. This is understandable since user

applications tend to store large data sets into arrays.
But since these are large structures particular single
errors they are less likely to be consumed, since
array accesses may rarely use the erroneous data.
Therefore, depending on application data usage
errors in primitive arrays may cause less applica-
tion errors than these error consumption rates indi-
cate. On the other hand, the reference arrays are
much more likely to cause application errors, since
a false pointer can almost always cause a segment
fault in the JVM (except those situations men-
tioned before in GC).

Due to the space limitations, details on other error
data types is not included here. Briefly, in the
“other heap object” part in Figure 5, constant fixed
objects occupy a large percentage of these objects.
These objects include bytecodes, the constant pool,
etc.

5.2 Checksum Silent Data Corruption Detection

To demonstrate effectiveness of our scheme for
detecting silent data corruption, we implemented a
prototype in Kaffe. Compared to the proposal, the
prototype implementation has several limitations.
First when native functions or System.array_copy
is called, we simply clear the object’s or array’s
checksum status rather than update the checksum
result, although in the future we will do so.

Another limitation is that we don’t compute check-
sum for large objects, although we do deal with
large arrays. We assume that we don’t expect to see
many large objects in Java applications because in
a Java object, embedded objects are stored as a ref-
erence.

We ran the fault injection experiments on our pro-
totype implementation with the four benchmarks.
We recorded the cases when consumed errors are
detected. We also compared relative slowdown of
the prototype implementation with the original
Kaffe implementation. These two results are sum-
marized in Figure 6. Here we show the percentage
of application errors that can be detected when the
error is consumed. The white areas represent errors
detected. “Errors in Object and Array” represent
those errors that we know took place in objects and

Object Heap Jess DB Javac Jack Avrg

Susceptibility 8.3% 7.1% 13.2% 11.9% 10.1%

Table 3 Susceptibility in the Heap

Figure 4 Error Consumption in the JVM’s Heap region.
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arrays and we could have corrected if we applied
checksumming; checksumming has not been
applied because the object is too big or operated by
some native functions that is not easily check-
summed. Finally errors happened are the cases
where error was not detected and corrected so it
caused an error.

The effectiveness of the detection depends on the
nature of the application. If the objects and arrays
account for most of the actual errors happening, the
technique is more effective. For example for Javac,
errors in objects and arrays account for nearly 80%
of all error occurrences, our technique can detect
up to 38% of all errors. This percentage is only the
current implementation limitation, it can be signifi-
cantly improved.

In the future, we can improve our implementation
by updating checksums during native function calls
and array copies. We can also extend the technique
by including more heap objects into the checksum
detection, such as constant pools and bytecode sec-
tions. Since they’re never changed after they are
loaded into the heap, the extra overhead for check-
summing them would be small, since only checks
on read access would be required.

It is also interesting to see the performance over-
head induced by the checksum process. We mea-
sure the execution time of original Kaffe
implementation and our prototype implementation.
The relative slowdown compared to the original
version is shown in Table 4 for each benchmark
used. On the IA-64 architecture, performance can
be improved by at least four times, due to the abil-

ity to use multiple arithmetic units explicitly to par-
allelize the computation.

6 Lessons Learned

We found ptrace is a good tool for fault injection
experiment. It lets us generate data breakpoints in
the Kaffe VM and track the consumption of the
injected errors. At the time of error consumption,
the breakpoint allows us to stop the VM and exam-
ine the its internal state. Originally we had thought
of collecting execution traces to study the error
consumption rate, but it would be extremely diffi-
cult for us to derive the VM’s status at the time of
error consumption from the traces. Of course,
ptrace has limitations. It is not clear to us whether
we can use it successfully on the kernel mode
study.

From the experiment data and analysis, the follow-
ing interesting observations can be derived:

• For Kaffe virtual machine and the Java applica-
tions running in it, the memory errors in the
object heap have a higher error consumption rate
and susceptibility rate than those in the static data
area. The heap size is also much larger than the
static data size. If we assume a uniform error dis-
tribution, we can draw the conclusion the heap
memory will be the dominate part in memory
susceptibility.

• A large portion of error consumption in the heap
is caused by the garbage collector (up to 75% in
the case of Jack). But this consumption leads to
less application errors than other consumption
(7% vs. 56%).

• For memory errors occurring in the object heap,
errors injected in normal objects (created with
new) and arrays cause 70% of the application
errors.

• By adding simple checksums normally undetec-
ted errors can be detected, increasing error cover-
age by 30-40%. While this comes at a cost, even

Figure 6 Checksum Detection of Application Errors
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using an unoptimized checksum routine this
functionality only increase run-time by 32-57%.

• Silent data corruption detection should be easily
increasable by placing checksums over more
object types (e.g. static objects). While the over-
head could be further reduced by limiting addi-
tional unnecessary checks.

• Several objects in the Java heap can be relatively
large and were not covered by our checksums.

7 Summary and Future Work

We still need some further work to complete our
study on memory failure recoverability at the
application level. First of all, we need to extend
and optimize our prototype silent data error corrup-
tion implementation to handle other heap objects,
these include large object, constant pool, byte code,
etc. Using this extension we can expect to achieve
a higher error detection rate.

Secondly, to further reduce the affect of the gar-
bage collector on detectng errors, it is would be
possible to modify it to use memory defensively to
expect memory errors and recover from them
itself. This is very similar to the construction of the
memory scrubber task in high-level operating sys-
tems.

Thirdly, it would be interesting to investigate fur-
ther to relationship between consumption rates and
susceptibility. While both factors depend largely on
the application workload and its input, we would
like to understand further any correlations or clas-
sifications of susceptibility to consumption rates.

7.1 Handling memory errors with Java

Java is ideally suited to handle memory errors. Its
exception mechanism provides an elegant memory
error recoverable programming model [1].

A typical exception handler looks like this

try {
... some action ...

} catch (Exception_type_1 e) {
... some exception handling ...

} catch (Exception_type_2 e) {
... some exception handling ...

} catch ...
...

} finally {
... action performed in any case ...
}

We propose introducing a new MemoryErrorEx-
ception class, a subclass of RuntimeException. We
define it as a runtime exception since the error may
happen at anytime and the developer shouldn't
have to catch it when unnecessary.

The developer is free to insert try-catch statements
at critical locations and to define their scope.

The MemoryErrorException includes some fields
or methods to

• indicate the severity (restartable or not)
• indicate the type (transient, SDC)

• point to the affected java object and object field.

When the error affects the JVM's internal state, as a
last attempt the VM throws an exception indicating
that it can't recover. The handler should cleanup its
state in minimum action and exit.

Otherwise the handler may query the affected
memory and perform appropriate actions. Note that
the error may not be overwritten nor cleared by the
handler, in which case other exceptions may be
raised subsequently.

This model applies to both transient memory errors
and silent data corruption.

8 Summary

In this report, we have described our effort in
studying the memory error susceptibility of the
Kaffe virtual machine by the method of fault injec-
tion. We found that for the Kaffe VM and the
benchmark applications we ran the heap objects
comprise most of the memory error consumption.
We also present our prototype implementation for
detecting silent data corruptions by object check-
sum. We find that this simple technique can detect
up to nearly 40% of all application errors caused by
silent data errors.
11



All experiments are executed in the Kaffe’s inter-
pretive mode. In order to use Kaffe with its supe-
rior performance JIT compiler, the JIT would need
to be modified to generated the checksum routine
inline with object accesses. Given that errors can
occur in any memory, it would also be possible to
consider checksumming the generated code, if its
size proves this to be necessary. Apart from this,
Kaffe using its JIT should have the same overall
behavior as it been has reported here, since the
same heap management system is used.

While introducing extra overhead of between 32-
57% might seem counter to todays JIT research,
this overhead represents an upper-bound on perfor-
mance loss. Early results indicate the CRC check-
sums on the IA-64 architecture can run up to four
times the speed as on IA-32 architecture proces-
sors.
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