
SFINX: A Multi-sensor Fusion and Mining System∗

Zoran Dimitrijevíc
zoran@cs.ucsb.edu

Gang Wu
gwu@engineering.ucsb.edu

Edward Y. Chang
echang@vimatech.com

Abstract

In a surveillance system, video signals are generated by
multiple cameras with or without spatially and temporally
overlapping coverage. These signals need to be transmit-
ted, processed, fused, stored, indexed, and then summarized
as semantic events to allow efficient and effective querying
and mining. SfinX aims to build several core components
for multi-sensor fusion and mining. This paper first depicts
SfinX’ architecture and its core components, namely, data
fusion, event detection, event characterization, event recog-
nition, and storage. In particular, we survey representative
methods and discuss plausible research directions for event
recognition and storage.

Keywords: video surveillance, event recognition, real-time
storage.

1 Introduction
Government agencies, business, schools, and homes are

increasingly turning toward video surveillance as a means to
increase public security. With the proliferation of inexpen-
sive cameras and the availability of high-speed, broad-band
wired/wireless networks, deploying a large number of cam-
eras for security surveillance has become economically and
technically feasible. However, several important research
questions remain to be addressed before we can rely upon
video surveillance as an effective tool for crime prevention.
TheSfinX project aims to develop several core components
to process, transmit, and fuse video signals from multiple
cameras, to mine unusual activities from the collected trajec-
tories, and to index and store video information for effective
viewing.

Figure 1 depicts a typical hardware architecture ofSfinX.
Cameras are mounted at the edges of a sensor network to col-
lect signals (shown on the upper-right of the figure). When
activities are detected, signals are compressed and transfered
to a server (lower-left of the figure). The server fuses multi-
sensor data and constructs spatio-temporal descriptors to de-
pict the captured activities. The server indexes and stores
video signals with their meta-data on RAID storage (lower-
right of the figure). Users of the system (upper-left of the
figure) are alerted to unusual events and they can perform
online queries to retrieve and inspect video-clips of interest.

∗This work was partially supported by NSF grants IIS-0133802 (Career),
IIS-0219885 (ITR), and EIA-0080134.

Mem

CPU Mem

Mem

CPU

CPU

CPU

CPU

Mem

CPU

Cameras

Database

Monitors

Storage

Figure 1. System architecture.

A surveillance task can be divided into four phases:event
detection, event representation, event recognition, andevent
query[4]. The detectionphase handles multi-source spatio-
temporal data fusion for efficient and reliable extraction of
motion trajectories from videos. Therepresentationphase
summarizes raw trajectory data to construct hierarchical, in-
variant, and adequate representations of the motion events.
Therecognitionphase deals with event recognition and clas-
sification. Lastly, thequerycomponent indexes and retrieves
videos that meet some query criteria.

In this paper, we focus our discussion onevent recogni-
tion andevent query. (Please see [10] for our discussion on
the other components.) Both components are designed for
achieving the same goal: returning information matching the
user-query criteria in an efficient way. A query, for instance,
can be worded like this: “select object =‘vehicles’ where
event =‘circling’ and location =‘parking lots’ and time =
‘since 9pm last night’.” Another example-query might be
“select object =‘vehicle A’ where event =‘*’ and location
= ‘*’ and time =‘since 9pm last night’.” To answer these
queries both effectively and efficiently, we design the recog-
nition and query components ofSfinX to fulfill the following
requirements:

1. Recognizing spatio-temporal patterns under extreme sta-
tistical constraints. Event recognition deals with mapping
motion patterns to semantics (e.g., benign and suspicious
events). Recognizing rare events comes up against two
mathematical challenges. First, the number of training in-
stances that can be collected for modeling rare events is

1

typically very small. LetN denote the number of train-
ing instances, andD the dimensionality of data. Tradi-
tional statistical models such as the Hidden Markov Model
(HMM) cannot work effectively under theN < D con-
straint. Furthermore, positive events (i.e., the sought-for
hazardous events) are always significantly outnumbered by
negative events in the training data. In such an imbalanced
set of training data, the class boundary tends to skew toward
the minority class and hence results in a high incidence of
false negatives.

2. Retrieving videos efficiently via different access paths.
Video data can be accessed via a variety of attributes, e.g.,
by objects, temporal attributes, spatial attributes, pattern
similarity, and by any combinations of the above. Si-
multaneously supporting high-throughput writes (record-
ing videos on RAID) and short response reads (retrieving
video segments relevant to a query) presents conflicting de-
sign requirements for memory management, disk schedul-
ing, and data placement policies.

We present preliminary results of our research on event
recognition and video indexing in the remainder of this paper.

2 Event Recognition
In video surveillance, event recognition deals with clas-

sifying and identifying particular motion patterns. InSfinX,
each motion trajectory is summarized as an ordered sequence
of labels using syntactic and semantic descriptors. Each la-
bel corresponds to a motion segment with a humanly under-
standable action. For instance, the following example depicts
a sequence with a two-level descriptor: a primary segment
symbol and two secondary variables—velocity and acceler-
ation. Sequence “s” denotes the segmented trajectory. Each
symbol in the sequence denotes the semantic label. For ex-
ample, “R” represents “right turn,” “L” represents “left turn,”
and “C” “constant direction.” Lastly,vi denotes the vector
of theith secondary variable. In this example,v1 is velocity
andv2 is acceleration.

s : L R R C L R R L
v1 : 0.7 0.5 0.8 0.8 0.7 0.8 0.6 0.5
v2 : 0.0 −0.2 0.3 0.0 −0.1 0.1 −0.2 −0.1

2.1 Generative vs. Discriminative Model

Now, given a set of aforementioned sequence observa-
tionsX = {xi, yi}N

1 , wherexi consists ofsi and somevij ,
the event recognition problem is to learn a classifier, which
assignsxi to its true event-classyi ∈ {1, 2, ..., K}.

A classifier generally belongs to one of the two learning
models, generative or discriminative.

1. Generative. A generative model learns a class den-
sity p(x|y = k) for each classk, k = 1, 2, ...,K. For a
query instance, its label is predicted first by using the Bayes
rule to calculate the class posterior probabilityp(y = k|x)
for eachk, and then by selecting the most likely classk

using theMaximum A Posterior(MAP) criterion. Lin-
ear Discriminant Analysis (LDA), Hidden Markov Models
(HMM), and Naive Bayes (NB) [7] belong to the generative
model, in which each class densityp(x|y = k) is learned
separately, using only training instances belonging to class
k.

2. Discriminative. A discriminative model directly esti-
mates the posteriorp(y = k|x) for classk without model-
ing the class densityp(x|y = k). Gaussian Process (GP)
and Logistic Regression belong to the discriminative camp.
Some discriminative classifiers such as Support Vector Ma-
chines (SVMs) directly learn a discriminant function to
model the class boundary between classes. In general, a
discriminative model considers both positive and negative
training instances in the learning process.
The generative model and the discriminative model each

enjoys its pros and cons. For detecting rare events, we em-
ploy the discriminative model because of the following two
practical constraints:

1. N < D. In video surveillance, the size of training
datasetN for modeling rare events is typically very small
and can be under-representative. A generative method such
as HMM requiresN >> D to learn a robust classifier, and
hence may not be suitable. On the other hand, SVMs can
depict class boundary (though fuzzily) with a small number
of training instances.

2. N+ ¿ N−. Positive training data (i.e., the suspicious
events we are seeking) are always significantly outnum-
bered by negative data. A discriminative model such as
SVM is known to beless sensitiveto the imbalanced dataset
learning because it performs class prediction without ex-
plicitly considering prior distributions. However, since the
imbalanced dataset learning problem still plagues SVMs,
we will discuss the problem and our remedies shortly.

2.2 Kernel Boundary Alignment
In our prior work [8], we proposed an adaptive confor-

mal transformationACT, based on feature-space distribu-
tion, to improve SVMs in learning imbalanced vector data.
Kernel boundary alignment,KBA, generalizes the work of
ACT to deal with both vector data and non-vector data (e.g.,
sequence data). Here, we first give a brief description ofACT
and then presentKBA.

2.3 Conformally Transforming K

Kernel-based methods, such as SVMs, introduce a map-
ping functionΦ which embeds the the input spaceI into a
high-dimensional feature spaceF as a curved Riemannian
manifoldS where the mapped data reside [1, 2]. A Rieman-
nian metricgij(x) is then defined forS, which is associated
with the kernel functionK(x,x′) by

gij(x) =

(
∂2K(x,x′)

∂xi∂x′j

)

x′=x

. (1)

The metricgij shows how a local area aroundx in I is
magnified inF under the mapping ofΦ. The idea of con-

2

formal transformation in SVMs is to enlarge the margin by
increasing the magnification factorgij(x) around the bound-
ary (represented by support vectors) and to decrease it around
the other points. This could be implemented by a conformal
transformation of the related kernelK(x,x′) according to
Eq. 1, so that the spatial relationship between the data would
not be affected too much [1]. Such a conformal transforma-
tion can be depicted as

K̃(x,x′) = D(x)D(x′)K(x,x′). (2)

In the above equation,D(x) is a properly defined positive
conformal function.D(x) should be chosen in a way such
that the new Riemannian metric̃gij(x), associated with the
new kernel functionK̃(x,x′), has larger values near the de-
cision boundary. Furthermore, to deal with the skew of the
class boundary caused by imbalanced classes, we magnify
g̃ij(x) more in the boundary area close to the minority class.
In [8], we demonstrate that an RBF distance function such as

D(x) =
∑

k∈SV

exp(−|x− xk|
τ2

k

) (3)

is a good choice forD(x).
In Eq. 3, we can see that ifτ2

k ’s are fixed for all support
vectorsxk ’s, D(x) would be very dependent on the density
of support vectors in the neighborhood ofΦ(x). To alleviate
this problem, we adaptively tuneτ2

k according to the spatial
distribution of support vectors inF [8]. This goal can be
achieved by the following equations:

τ2
k = AV Gi∈{‖Φ(xi)−Φ(xk)‖2<M, yi 6=yk}

(
‖Φ(xi)− Φ(xk)‖2

)
.

(4)

In this equation, the average on the right-hand side com-
prises all support vectors inΦ(xk)’s neighborhood within the
radius ofM but having a different class label. Here,M is
the average distance of the nearest and the farthest support
vectors fromΦ(xk). Settingτ2

k in this way takes into con-
sideration the spatial distribution of the support vectors inF .
Although the mappingΦ is unknown, we can play the kernel
trick to calculate the distance inF :

‖Φ(xi)− Φ(xk)‖2 = K(xi,xi) + K(xk,xk)− 2×K(xi,xk).
(5)

Substituting Eq. 5 into Eq. 4, we can then calculate the
τ2
k for each support vector, which can adaptively reflect the

spatial distribution of the support vector inF , not inI.
When the training dataset is very imbalanced, the class

boundary would be skewed towards the minority class in the
input spaceI. We hope that the new metric̃gij(x) would
further magnify the area far away from a minority support
vectorxi so that the boundary imbalance could be alleviated.
Our algorithm thus assigns a multiplier for theτ2

k in Eq. 4
to reflect the boundary skew inD(x). We tuneτ̃2

k asηpτ
2
k

if xk is a minority support vector; otherwise, we tune it as
ηnτ2

k . Examining Eq. 3, we can see thatD(x) is a mono-
tonically increasing function ofτ2

k . To increase the metric

g̃ij(x) in an area which is not very close to the support vec-
tor xk, it would be better to choose a largerηp for the τ2

k

of a minority support vector. For a majority support vector,
we can choose a smallerηn, so as to minimize influence on
the class-boundary. We empirically demonstrate thatηp and
ηn are proportional to the skew of support vectors, orηp as

O(|SV−|
|SV+|), andηn asO(|SV+|

|SV−|), where|SV+| and |SV−|
denote the number of minority and majority support vectors,
respectively. (Please see [8] for the details of ACT.)

2.4 Modifying K
For data that do not have a vector-space representation

(e.g., sequence data), ACT may not be applicable. We thus
employKBA [9], which modifies kernel matrixK based on
training-data distribution. Kernel matrixK contains the pair-
wise similarity information between all pairs of instances in
a training dataset. Hence, in kernel-based methods, all we
need is a kernel matrix to learn the classifier, even if the data
do not reside in a vector space.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

D
(x

)

kxxk

D(x)=exp(-(1/kxxk
-1)/τk

2)

τk
2=50.0

τk
2=5.0

τk
2=0.5

Figure 2. D(x) vs. kxxk with different τ2
k .

Now, since a training instancex might not be a vector, we
introduce a term,support instance, to denotex when its em-
bedded point viaK is a support vector1. In this situation, we
cannot chooseD(x) as in Eq. 3. (It is impossible to calculate
the Euclidean distance|x− xi| for non-vector data.) In Sec-
tion 2.3, we show thatD(x) should be chosen in such a way
that the spatial resolution of the manifoldS would be mag-
nified around the support instances. In other words, ifx is
close to a support instancexk in F (or in its neighborhood),
we hope thatD(x) would be larger so as to achieve a greater
magnification. InKBA, we use the pairwise-similaritykxxk

to measure the distance ofx from xk in F . Therefore, we
chooseD(x) as

D(x) =
∑
k∈SI

exp

(
−

1
kxxk

− 1

τ2
k

)
, (6)

whereSI denotes the support-instance set, andτ2
k controls

the magnitude ofD(x).
Figure 2 illustrates aD(x) for a given support instance

xk, where we can see thatD(x) (y-axis) becomes larger

1In KBA algorithm, if x is a support instance, we call bothx and its
embedded support vector viaK in F support instance.

3

when an instancex is more similar toxk (a largerkxxk in
thex-axis), so that there would be more magnification on the
spatial resolution around the support vector embedded byxk

in F . Notice in the figure thatD(x) can be shaped very dif-
ferently with differentτ2

k . We thus need to adaptively choose
τ2
k as

τ2
k = AV Gi∈{Dist2(xi,xk)<M, yi 6=yk}Dist2(xi,xk), (7)

where the distanceDist2(xi,xk) between two support in-
stancesxi andxk is calculated via the kernel trick as

Dist2(xi,xk) = kxixi + kxkxk − 2× kxixk . (8)

The neighborhood rangeM in Eq. 7 is chosen as the aver-
age of the minimal distanceDist2min and the maximal dis-
tanceDist2max from xk. In addition,τ2

k is scaled in the same
way as we did in Section 2.3 for dealing with the imbalanced
training-data problem. For details ofKBA and results of our
experiments, please refer to [9].

3 Event Query
In addition to standard performance requirements (high

throughput, high availability, scalability, etc.), the storage
system for surveillance applications must support real-time
IOs to store and retrieve video segments. For instance, a
casino in San Diego uses two large RAIDs to store video
recordings from900 high-resolution cameras and to retrieve
video clips on demand to20 displays. The RAIDs must
support simultaneously900 real-time write streams and20
interactive read streams (playback, instant-replay, and fast-
forward operations) to keep the surveillance system opera-
tional. The requirements for such a storage system can be
summarized as follows:

1. Differentiated service. Surveillance applications re-
quire both real-time and traditional best-effort data access.
This means that a storage system should differentiate IO
requests and service them according to their quality of ser-
vice (QoS) requirements. In effect, this requires that each
IO request is associated with its QoS requirements.

2. Guaranteed-latency response.Read requests must be
serviced before their deadlines, or “viewing hiccups” might
occur. There are two types of deadlines: the time to retrieve
the first frame into main memory for decoding, and the time
to supply subsequent frames to the decoder. Write requests
can be delayed at the cost of more DRAM buffering space.

3. High throughput. A storage system must support
high throughput given QoS requirements and real-time con-
straints.
To meet these performance requirements,SfinX’s storage

system offers strategies indata placement, admission con-
trol, disk scheduling, and backup manager. Due to space
limitations, we discuss only itsadmission controlanddisk
schedulingmodules.

3.1 Admission Control
Theadmission controlmodule [5] uses the following an-

alytical model to decide if a newly arrived request (read or
write) can be admitted to a RAID disk. GivenN streams

to support, in each time cycle the RAID must performN
IO operations, each consisting of a latency component and
a data transfer component. LetTdisk denote the disk cycle
time. LetLdiski denote the disk latency to start IO transfer
for streami. Let rRT denote the fraction of time reserved for
real-time streams within each disk cycle. LetBi denote the
bit-rate for a streami. Let Rdiski

denote the disk throughput
for the zone on which streami resides. Then the relationship
between these parameters can be expressed as

rRT × Tdisk ≥
N∑

i=1

Ldiski +

N∑
i=1

Tdisk ×Bi

Rdiski

.

The above equation can be simplified as

Tdisk ≥ N × L̄disk ×Rdisk

rRT ×Rdisk −N × B̄
(9)

whererRT ×Rdisk > N × B̄. When a read IO is requested,
theadmission controlmodule ofSfinX checks to see whether
Inequality 9 is satisfied. If not, the read request is rejected.

3.2 Disk Scheduling
The disk schedulingmodule is responsible for the lo-

cal disk scheduling and buffer management on each storage
node. SfinX uses time-cycle scheduling for guaranteed-rate
real-time streams, improved to also support non-real-time IO
requests with different priorities. Figure 3 depicts cycle-
based scheduling with three guaranteed-rate streams. The
scheduler maintains a bubble slot [3], and services high prior-
ity IO requests in the bubble slot after theadmission control
module decided that servicing the requests will not degrade
the system QoS.

31 2 1

Time
Bubble−slot

TdiskTime−cycle

Real−time IO Best−effort IOsIdle−time

Figure 3. Cycle-based disk QoS scheduler.

To achieve short latency for high-priority requests, while
maintaining high disk throughput,SfinX uses preemptible
disk scheduler, which services IO requests usingSemi-
preemptible IO[6]. Semi-preemptible IOmaps each IO re-
quest into multiple fast-executing (and hence short-duration)
disk commands using three methods. (The ongoing IO re-
quest can be preempted between these disk commands.)
Each of these three methods addresses the reduction of one of
the following IO components:Ttransfer (denoting transfer
time), Trot (denoting rotational delay), andTseek (denoting
seek time).

1. ChunkingTtransfer. A large IO transfer is divided into
a number of small chunk transfers, and preemption is made
possible between the small transfers. If the IO is not pre-
empted between the chunk transfers, chunking does not in-
cur any overhead. This is due to the prefetching mechanism
in current disk drives.

4

2. PreemptingTrot. By performing just-in-time (JIT) seek
for servicing an IO request, we can virtually eliminate the
rotational delay at the destination track. The pre-seek slack
time thus obtained is preemptible. This slack can also be
used to perform prefetching for the ongoing IO request,
or/and to perform seek splitting.

3. SplittingTseek. Semi-preemptible IOsplits a long seek
into sub-seeks, and permits a preemption between two sub-
seeks.

The following example illustrates howSemi-preemptible
IO improves the expected waiting time for a high-priority
request.

[Illustrative Example] Suppose a2 MB read-request has
to seek20, 000 cylinders requiringTseek of 14 ms, must
wait for a Trot of 8 ms, and requiresTtransfer of 100 ms
at a transfer rate of20 MBps. The expected waiting time,
E(Twaiting), for a higher-priority request arriving during the
execution of this request, is61 ms, while the maximum wait-
ing time is122 ms.Semi-preemptible IOcan reduce the wait-
ing time by performing the following operations.

It first predicts both the seek time and rotational delay.
Since the predicted seek time is long (Tseek = 14 ms),
it decides to split the seek operation into two sub-seeks,
each of10, 000 cylinders, requiringT ′seek = 9 ms each.
This seek splitting does not incur extra overhead because
the Trot = 8 can mask the4 ms increased total seek time
(2 × T ′seek − Tseek = 2 × 9 − 14 = 4) incurred by seek
splitting, which is not always possible. The rotational delay
is nowT ′rot = Trot− (2× T ′seek − Tseek) = 4 ms. With this
T ′rot = 4 ms knowledge,Semi-preemptible IOcan wait for
4 ms before performing a JIT-seek. The JIT-seek method
makesT ′rot preemptible, since no disk operation is being
performed. The disk then performs the two sub-seek disk
commands, and then100 successive read commands, each
of size20 kB, requiring1 ms each. A high-priority IO re-
quest can be serviced immediately after any disk-command.
Semi-preemptible IOthus makes preemptible the originally
non-preemptible IO request. During the service of this IO,
we have two scenarios:

1. No higher-priority IO arrives.
In this case, the disk does not incur additional overhead
for transferring data (due to disk prefetching) nor any ad-
ditional disk latency (due to rotational delay prediction).
(If Trot cannot mask the seek-splitting overhead, we can
choose not to perform seek-splitting.)

2. A higher-priority IO arrives.
In this case, the maximum waiting time for the high-
priority request is now a mere9 ms, if it arrives during one
of the two seek disk commands. However, if the ongoing
request is at the data-transfer stage, the longest stall for the
high-priority request is just1 ms. The expected value for
waiting time is only1

2
0×42+2×92+100×12

4+2×9+100 = 1.1 ms, a sig-
nificant reduction from61 ms.

2

Both theadmission controlmodule and thedisk schedul-
ing module have been implemented in Linux. Please refer
to [6] for details.

4 Conclusion
In this paper, we have introducedSfinX and reviewed its

event recognition and event query components. We enu-
merated challenges and requirements for these components
and outlined our solutions. We plan to enhance our system
in several ways. ForKBA, we are investigating more ro-
bust kernel-matrix alignment methods that can achieve good
generalization performance (to unseen data) without suffer-
ing from overfitting. Preliminary results showKBA to be
promising, and we are researching theoretical justifications
for its effectiveness. For event query, we are investigating
effective sequence-data indexing methods to support queries
via different attributes. AlthoughSfinX is oriented to sup-
port surveillance applications, its components will continue
to involve research in the areas of Computer Vision, Signal
Processing, Machine Learning, Databases, and Systems.

References
[1] S. Amari and S. Wu. Improving support vector machine

classifiers by modifying kernel functions.Neural Networks,
12(6):783–789, 1999.

[2] C. Burges.Geometry and Invariance in Kernel Based Meth-
ods. In Adv. in Kernel Methods: Support Vector Learning.
MIT Press, 1999.

[3] E. Chang and H. Garcia-Molina. Bubbleup - Low latency
fast-scan for media servers.Proceedings of the 5th ACM Mul-
timedia Conference, pages 87–98, November 1997.

[4] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Dug-
gins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt,
and L. Wixson. A system for video surveillance and moni-
toring (VSAM project final report).CMU Technical Report
CMU-RI-TR-00-12, 2000.

[5] Z. Dimitrijevic, R. Rangaswami, and E. Chang. The
XTREAM multimedia system.Proceedings of the IEEE Con-
ference on Multimedia and Expo, August 2002.

[6] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Design and
implementation of Semi-preemptible IO.Proceeding of the
2nd Usenix FAST, pages 145–158, March 2003.

[7] Y. D. Rubinstein and T. Hastie. Discriminative vs. informative
learning. Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, March 1997.

[8] G. Wu and E. Chang. Adaptive feature-space conformal
transformation for learning imbalanced data.Proceedings of
the Twentieth International Conference of Machine Learning
(ICML), pages 816–823, August 2003.

[9] G. Wu and E. Chang. Class-boundary alignment for learn-
ing imbalanced data.Proceedings of the Twentieth Interna-
tional Conference of Machine Learning (ICML) Workshop on
Learning from Imbalanced Datasets, pages 49–56, August
2003.

[10] G. Wu, Y. Wu, L. Jiao, Y.-F. Wang, and E. Y. Chang. Multi-
camera spatio-temporal fusion biased sequence-data learning
for video surveillance. ACM International Conference on
Multimedia, November 2003.

5

