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Abstract i
i
In a surveillance system, video signals are generated by I ‘
multiple cameras with or without spatially and temporally L
overlapping coverage. These signals need to be transmit-
ted, processed, fused, stored, indexed, and then summarized -
as semantic events to allow efficient and effective querying UU
and mining. SfinX aims to build several core components
for multi-sensor fusion and mining. This paper first depicts )
SfinX" architecture and its core components, namely, data P
fusion, event detection, event characterization, event recog-
nition, and storage. In particular, we survey representative
methods and discuss plausible research directions for event ——
recognition and storage. UU
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Figure 1. System architecture.
storage.

1 Introduction A surveillance task can be divided into four phasagent

) _ detection event representatigrevent recognitionandevent
Government agencies, business, schools, and homes g 14]. The detectionphase handles multi-source spatio-

increasingly turning toward video surveillance as a means {@mnora| data fusion for efficient and reliable extraction of
increase public security. With the proliferation of inexpensyqtion trajectories from videos. Thepresentatiorphase

sive cameras and the availability of high-speed, broad-baagmmarizes raw trajectory data to construct hierarchical, in-
wired/wireless networks, deploying a large number of caMyaiant, and adequate representations of the motion events.
eras for security surveillance has become economically aﬁ‘i’\erecognitionphase deals with event recognition and clas-

technically feasible. However, several important researcliication. Lastly, theguerycomponent indexes and retrieves
questions remain to be addressed before we can rely Up@Reos that meet some query criteria.

video surveillance as an effective tool for crime prevention. | s paper, we focus our discussion event recogni-

The SfinX project aims to develop several core componentg,, angevent query (Please see [10] for our discussion on
to process, transmit, and fuse video signals from multiplg,e ,iher components.) Both components are designed for
cameras, to mine unusual activities from the collected traleﬁ'chieving the same goal: returning information matching the

tories, and to index and store video information for eﬁec“"%ser-query criteria in an efficient way. A query, for instance

viewing. . . ] ) can be worded like this: “select object‘wehicles’ where
Figure 1 depicts a typical hardware architectur&fX. o ent =‘circling’ and location =parking lots’ and time =
Cameras are mounted at the edges of a sensor network to ¢gjx e 9pm last night” Another example-query might be

lect signals (shown on the upper-right of the figure). Whenrgg|gct object =vehicle A’ where event =¥ and location
activities are detected, signals are compressed and transfered: 54 time ='since 9pm last night' To answer these
to a server (lower-left of the figure). The server fuses mumaueries both effectively and efficiently, we design the recog-

sensor data and constructs spatio-temporal descriptors to g&iqn and query components 8finX to fulfill the following
pict the captured activities. The server indexes and Stor?équirements:

video signals with their meta-data on RAID storage (lower- 1R nizin tio-temporal patterns under extreme sta-
right of the figure). Users of the system (upper-left of the - ecog g spatio-temporai patterns u

figure) are alerted to unusual events and they can perforrﬁr'ns(t)'t?grl] CO{;;;?}?E{SO' Si\ﬁgagigoimt'ogsriaf ;\:::jh smuzpirélir(])%s
online queries to retrieve and inspect video-clips of interest. P e.g., 9 P

events). Recognizing rare events comes up against two
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typically very small. LetN denote the number of train- using theMaximum A PosteriofMAP) criterion. Lin-

ing instances, and the dimensionality of data. Tradi- ear Discriminant Analysis (LDA), Hidden Markov Models
tional statistical models such as the Hidden Markov Model (HMM), and Naive Bayes (NB) [7] belong to the generative
(HMM) cannot work effectively under th& < D con- model, in which each class densjiyx|y = k) is learned
straint. Furthermore, positive events (i.e., the sought-forseparately, using only training instances belonging to class
hazardous events) are always significantly outnumbered byk.

negative events in the training data. In such an imbalanced. pjscriminative. A discriminative model directly esti-
set of training data, the class boundary tends to skew towarGnates the posterigr(y = k|x) for classk without model-

the minorit)_/ class and hence results in a high incidence Ofing the class density(x|y = k). Gaussian Process (GP)
false negatives. and Logistic Regression belong to the discriminative camp.
2. Retrieving videos efficiently via different access paths. Some discriminative classifiers such as Support Vector Ma-
Video data can be accessed via a variety of attributes, e.gghines (SVMs) directly learn a discriminant function to
by objects, temporal attributes, spatial attributes, patternmodel the class boundary between classes. In general, a
similarity, and by any combinations of the above. Si- discriminative model considers both positive and negative
multaneously supporting high-throughput writes (record- training instances in the learning process.

ing videos on RAID) and short response reads (retrieving The generative model and the discriminative model each
video segments relevant to a query) presents conflicting denjoys its pros and cons. For detecting rare events, we em-
sign requirements for memory management, disk schedydloy the discriminative model because of the following two
ing, and data placement policies. practical constraints:

We present preliminary results of our research on eventl. N < D. In video surveillance, the size of training

recognition and video indexing in the remainder of this paper.datasetV for modeling rare events is typically very small
and can be under-representative. A generative method such

2 Event Recognition as HMM requiresV >> D to learn a robust classifier, and
hence may not be suitable. On the other hand, SVMs can

In video surveillance, event recognition deals with clas- . . ;
s ; o . ; ! depict class boundary (though fuzzily) with a small number
sifying and identifying particular motion patterns. $finX, T
of training instances.

each motion trajectory is summarized as an ordered sequence » o ] o
of labels using syntactic and semantic descriptors. Each la2- N < N~. Positive training data (i.e., the suspicious
bel corresponds to a motion segment with a humanly under€Vents we are seeking) are always significantly outnum-
standable action. For instance, the following example depictd’éred by negative data. A discriminative model such as
a sequence with a two-level descriptor: a primary segmentSVM is known to bdess sensitivéo the imbalanced dataset
symbol and two secondary variables—velocity and acceler-€arning because it performs class prediction without ex-
ation. Sequences” denotes the segmented trajectory. Each plicitly considering prior distributions. However, since the
symbol in the sequence denotes the semantic label. For exMbalanced dataset learning problem still plagues SVMs,
ample, “R” represents “right turn,” “L” represents “left turn,” W€ will discuss the problem and our remedies shortly.

and “C” “constant direction.” Lastlyy; denotes the vector 2 2 Kernel Boundary Alignment

of thei'" secondary variable. In this exampig, is velocity

andv, is acceleration. In our prior work [8], we proposed an adaptive confor-

mal transformationACT, based on feature-space distribu-

s: L R R C I R R I tion, to improve SVMs in learning imbalgnced vector data.
vi: 07 05 08 08 07 08 06 0.5 Kernel boundary alignmen&BA, generalizes the work of
ve: 00 -02 03 00 -01 01 -02 -—0.1 ACT to deal with both vector data and non-vector data (e.g.,

sequence data). Here, we first give a brief descriptiok©f
and then presertBA.

2.1 Generative vs. Discriminative Model 2.3 Conformally Transforming &

Now, given a set of aforementioned sequence observa- .
. ' 9 N . d Kernel-based methods, such as SVMs, introduce a map-
tionsX = {x;,y;}1 , wherez; consists ofs; and somey;;, . . . . .
L . o . ping function® which embeds the the input spatento a
the event recognition problem is to learn a classifier, whic]. . . . .
igh-dimensional feature spade as a curved Riemannian

assignsx; to its true event-clasg; € {1,2,.., K}, manifold S where the mapped data reside [1, 2]. A Rieman-

A classifier ggnerally_ be!"r?gs Fo one of the two Iearnlng]ian metricg;; (x) is then defined forS, which is associated
models, generative or discriminative. with the kernel functionk (x, x') by

1. Generative. A generative model learns a class den- 92K (x, %)
sity p(x|y = k) for each class, k = 1,2,..., K. Fora gij(x) = (W) )
guery instance, its label is predicted first by using the Bayes I S x=x
rule to calculate the class posterior probability = k|x) The metricg;; shows how a local area arourdin I is
for eachk, and then by selecting the most likely cldss magnified inF' under the mapping ob. The idea of con-

@



formal transformation in SVMs is to enlarge the margin byj,;(x) in an area which is not very close to the support vec-
increasing the magnification factgy; (x) around the bound- tor x, it would be better to choose a largey for the 7

ary (represented by support vectors) and to decrease it arowfda minority support vector. For a majority support vector,
the other points. This could be implemented by a conformate can choose a smallgy,, so as to minimize influence on
transformation of the related kernél(x,x’) according to the class-boundary. We empirically demonstrate thand
Eqg. 1, so that the spatial relationship between the data woulg are proportional to the skew of support vectorsypias
not be affected too much [1]. Such a conformal transformay(1SV_1) “andy,, asO( ISV T ), where|SV*| and |SV |

S
. . [SVT] SV~
tion can be depicted as denote the number of minority and majority support vectors,

K(x,x') = D(x)D(x') K (x,x). (2) respectively. (Please see [8] for the details of ACT.)

In the above equatio)(x) is a properly defined positive 2.4 Modifying K )
conformal function. D(x) should be chosen in a way such ~ FOr data that do not have a vector-space representation
that the new Riemannian metrig; (x), associated with the (€-9., séquence data), ACT may not be applicable. We thus
new kemel functior (x, x'), has larger values near the de-€MPIOYKBA [9], which modifies kernel matri¥ based on

cision boundary. Furthermore, to deal with the skew of th@ining-data distribution. Kernel matr contains the pair-

class boundary caused by imbalanced classes, we magrﬁ\f?e similarity information between all pairs of instances in

§i;(x) more in the boundary area close to the minority clas€ training dataset. Hence, in kernel-based methods, all we

In [8], we demonstrate that an RBF distance function such gged is a kernel matrix to learn the classifier, even if the data
' _ do not reside in a vector space.
|x — x|
D(x) = § exp(———5—) (3)

T

keSV _ 2
is a good choice foP(x). D(x)=exp(-(1/kyy,-1)/1")

In Eqg. 3, we can see that if*'s are fixed for all support 1 I ] —
vectorsx;’s, D(x) would be very dependent on the density —  ~o | ~ = .7
of support vectors in the neighborhood®fx). To alleviate
this problem, we adaptively tung’ according to the spatial
distribution of support vectors i’ [8]. This goal can be

~—~
X

~—
(@]

2 —
achieved by the following equations: T 5900 —
. Tkz.:'S.O """" -
Ti = AVGie (ot - oo i2<n, yirm} (1206) — 2(xe)]*) - o L1 K =05
@) 0O 02 04 06 08 1
In this equation, the average on the right-hand side com- kXXk
prises all support vectors i(xy)'s neighborhood within the
radius of M but having a different class label. Her®/ is Figure 2. D(x) vs. ki, With different 2.

the average distance of the nearest and the farthest support
vectors from®(xy). Settingr? in this way takes into con-  Now, since a training instancemight not be a vector, we
sideration the spatial distribution of the support vectorgin introduce a termsupport instanceto denotex when its em-

trick to calculate the distance ifi: cannot choos®(x) as in Eq. 3. (Itis impossible to calculate

the Euclidean distand& — x;| for non-vector data.) In Sec-

tion 2.3, we show thab(x) should be chosen in such a way

5) that the spatial resolution of the manifofiwould be mag-
nified around the support instances. In other words, i

Substituting Eg. 5 into Eq. 4, we can then calculate th€!0S€ t0 @ support instaneg in £ (or in its neighborhood),
72 for each support vector, which can adaptively reflect th&¥/ NOP€ thaD(x) would be larger so as to achieve a greater
N . magnification. INKBA, we use the pairwise-similarityy.,
spatial distribution of the support vector iy notinI. to measure the distance gffrom x;, in F'. Therefore, we
When the training dataset is very imbalanced, the Cla%%ooseD(x) as '

[|®(x:) — (I)(Xk)HQ = K(xi,%i) + K(xk,xr) — 2 X K(xi,Xk).

boundary would be skewed towards the minority class in the ,%lzk -
input spacel. We hope that the new metrig; (x) would D(x) =) exp ) (6)
further magnify the area far away from a minority support kesI

vectorx; so that the boundary imbalance could be alleviatedvhereSI denotes the support-instance set, afictontrols
Our algorithm thus assigns a multiplier for thg in Eq. 4 the magnitude oD (x).

to reflect the boundary skew iP(x). We tune7? asn,72 Figure 2 illustrates & (x) for a given support instance
if x; is a minority support vector; otherwise, we tune it asck» Where we can see thdb(x) (y-axis) becomes larger
77n7';3- Examining Eg. 3, we can see th@t(x) IS @ mono- lin KBA algorithm, if x is a support instance, we call bathand its

tonically increasing function of?. To increase the metric embedded support vector i€ in F support instance



when an instance is more similar toxy, (a largerk., in  to support, in each time cycle the RAID must perfofyn
thex-axis), so that there would be more magnification on th#) operations, each consisting of a latency component and
spatial resolution around the support vector embedded,by a data transfer component. LE&};,; denote the disk cycle
in . Notice in the figure thaD(x) can be shaped very dif- time. Let Ly, denote the disk latency to start 10 transfer
ferently with differentr?. We thus need to adaptively choosefor streami. Letr g denote the fraction of time reserved for
T,f as real-time streams within each disk cycle. L8t denote the
2 ava / Dist®(x; 7 bit-rate forastrear_ﬂ Let Ryisk, d_enote the disk throgghpL_lt
Tk ‘./G’E{D”‘Q"‘i’xk)“[’ vy Dist (i, 30, ( ) for the zone on which streafresides. Then the relationship
where the distanc@®ist?(x;, x;) between two support in- between these parameters can be expressed as
stancest; andxy, is calculated via the kernel trick as N N
Dist? (x4, X1) = kaya; + Fopor — 2 X Koyop- ®) rar X Tak > 3 Laii, + w _
The neighborhood rangk/ in Eq. 7 is chosen as the aver- i=1 i ek
age of the minimal distanc®ist?,;, and the maximal dis-

tanceDist?, ... fromx;. In addition,r? is scaled in the same

max

The above equation can be simplified as

way as we did in Section 2.3 for dealing with the imbalanced Tyiar > N X Laisk % Raisk _ ©)
training-data problem. For details KBA and results of our = rrr X Rgisk —N x B
experiments, please refer to [9]. wherergr X Raisr > N x B. When aread 10 is requested,

3 E t theadmission contramodule ofSfinX checks to see whether
vent Query Inequality 9 is satisfied. If not, the read request is rejected.
In addition to standard performance requirements (hig . .
throughput, high availability, scalability, etc.), the storage?'2 DI.Sk Schedul.mg . ]
system for surveillance applications must support real-time 1Nhe disk schedulingmodule is responsible for the lo-
I0s to store and retrieve video segments. For instance,C&! disk scheduling and buffer management on each storage
casino in San Diego uses two large RAIDs to store videBOde; SfinX uses tlme-cycle scheduling for guarantee_d-rate
recordings fromd00 high-resolution cameras and to retrieve €al-time streams, improved to also support non-real-time 10
video clips on demand tao displays. The RAIDs must requests with @fferept priorities. Figure 3 depicts cycle-
support simultaneouslgo0 real-time write streams angh based schedgllng with three guaranteed—ratg strea}ms. 'The
interactive read streams (playback, instant-replay, and fa§€heduler maintains a bubble slot [3], and services high prior-
forward operations) to keep the surveillance system oper#Y |0 requests in the bubble slot after taémission control
tional. The requirements for such a storage system can module decided that servicing the requests will not degrade

summarized as follows: the system QoS.
1. Differentiated service. Surveillance applications re- Real—time 10 Idle-time Best-effort 10s
quire both real-time and traditional best-effort data access. O @ O @
This means that a storage system should differentiate 10 :
requests and service them according to their quality of ser- | | Bt Time
vice (QoS) requirements. In effect, this requires that each Time-cycle Tjig

IO request is associated with its QoS requirements.

2. Guaranteed-latency respons®ead requests must be Figure 3. Cycle-based disk QoS scheduler.

serviced before their deadlines, or “viewing hiccups” might ) ) o )
occur. There are two types of deadlines: the time to retrieve 10 achieve short latency for high-priority requests, while
the first frame into main memory for decoding, and the timgaintaining high disk throughpubfinX uses preemptible
to supply subsequent frames to the decoder. Write reque§i§k scheduler, which services 10 requests usBgmi-
can be delayed at the cost of more DRAM buffering spac®réemptible 10[6]. Semi-preemptible IGnaps each 10 re-

3. High throughput. A storage system must supporthESt into multiple fast-executing (and hence short-duration)

high throughput given QoS requirements and real-time corq—iSk commands using three methods. (The ongoing IO re-
st?aints ghputg q guest can be preempted between these disk commands.)

) ] Each of these three methods addresses the reduction of one of
To meet these performance requiremeffsX’s storage

e AR the following IO componentsT;,q,srer (denoting transfer
system offers strategies ohata placementadmission con- time), T,..; (denoting rotational delay), arifl.. (denoting
trol, disk schedulingand backup manager Due to space

L . ) S : seek time).
lslzznr::aaéluolinns’ V;Z o|l|scuss only itadmission controkind disk 1. ChunkingT},qnsfer- A large 10 transfer is divided into
gnoauies. a number of small chunk transfers, and preemption is made
3.1 Admission Control possible between the small transfers. If the 10 is not pre-
The admission contromodule [5] uses the following an- empted between the chunk transfers, chunking does not in-
alytical model to decide if a newly arrived request (read or cur any overhead. This is due to the prefetching mechanism
write) can be admitted to a RAID disk. GiveN streams  in current disk drives.



2. Preemptindl’.,:. By performing just-in-time (JIT) seek  Both theadmission contromodule and thelisk schedul-

for servicing an 10 request, we can virtually eliminate théng module have been implemented in Linux. Please refer
rotational delay at the destination track. The pre-seek slati [6] for details.

time thus obtained is preemptible. This slack can also b .
used to perform prefetching for the ongoing 10 request; Conclusion

or/and to perform seek splitting. In this paper, we have introduc&dinX and reviewed its

3. Splitting Tse.. Semi-preemptible 1@plits a long seek event recognition and event query components. We enu-

into sub-seeks, and permits a preemption between two suUperated challenges and requirements for these components
seeks. and outlined our solutions. We plan to enhance our system

. . . . in several ways. FOKBA, we are investigating more ro-
The following example illustrates ho®emi-preemptible o )
. " . . .~ bust kernel-matrix alignment methods that can achieve good
IO improves the expected waiting time for a high-priority

request generalization performance (to unseen data) without suffer-
q ' ing from overfitting. Preliminary results shoiBA to be

[llustrative Example] Suppose @& MB read-request has Promising, and we are researching theoretical justifications
to seek20, 000 cylinders requiringZ..,, of 14 ms, must for its effectiveness. For event query, we are investigating
wait for aT,,; of 8 ms, and required}, ... of 100 ms effective sequence-data indexing methods to support queries
at a transfer rate o0 MBps. The expected waiting time, via different attributes. AlthougKfinX is oriented to sup-
E(Tpaiting), for a higher-priority request arriving during the port surveillance applications, its components will continue
execution of this request, 8 ms, while the maximum wait- 10 involve research in the areas of Computer Vision, Signal
ing time is122 ms. Semi-preemptible 1@an reduce the wait- Processing, Machine Learning, Databases, and Systems.
ing time by performing the following operations.

It first predicts both the seek time and rotational deIayReferenceS
Since the predicted seek time is lon@,{.x = 14 ms),
it decides to split the seek operation into two sub-seeks, 12(6):783-789, 1999,

. o y =
ea(_:h OflO’OO(_) f:yllnders, reqwrmgTseek = 9 ms each. ] C. Burges.Geometry and Invariance in Kernel Based Meth-
This seek splitting does not incur extra overhead because = 445 1n Adv. in Kernel Methods: Support Vector Learning

[1] S. Amari and S. Wu. Improving support vector machine
classifiers by modifying kernel function$\Neural Networks

the T;.,; = 8 can mask thel ms increased total seek time MIT Press, 1999.

(2 x Tl . — Tseek = 2 x 9 — 14 = 4) incurred by seek [3] E. Chang and H. Garcia-Molina. Bubbleup - Low latency
splitting, which is not always possible. The rotational delay  fast-scan for media servemroceedings of the 5th ACM Mul-
isNowWT, , = Tror — (2 X Ty op — Tseerr) = 4 ms. With this timedia Conferencepages 87—98, November 1997.

T',. = 4 ms knowledgeSemi-preemptible I@an wait for [4] R_. T. Colliqs, A.J. L_ipton, T. Kanade, H. Fujiyoshi, D. Dug-
4 ms before performing a JIT-seek. The JIT-seek method 9'”§xLY-VT/_S'”x D. TAo”lvetr, N.fEnoq;oto, 0. H_fitlsegawa,dP. Burt,
makesT”,, preemptible, since no disk operation is bein and L. WWixson. A sysiem Ior viceo surveiiance and moni-
rot P p b _g toring (VSAM project final report). CMU Technical Report
performed. The disk then performs the two sub-seek disk CMU-RI-TR-00-122000
commands, and thet)0 successive read commands, each5; 7 pimitrijevic, R. Rangaswami, and E. Chang. The
of size 20 kB, requiring1 ms each. A high-priority |0 re- XTREAM multimedia systemProceedings of the IEEE Con-
quest can be serviced immediately after any disk-command.  ference on Multimedia and ExpSugust 2002.
Semi-preemptible I@hus makes preemptible the originally [6] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Design and

non-preemptible 10 request. During the service of this IO,  implementation of Semi-preemptible ICProceeding of the

we have two scenarios: 2nd Usenix FASTpages 145-158, March 2003.

1. No higher-priority 10 arrives [7] Y.D. Rubinstein and T. Hastie. Discriminative vs. informative
L , o . learning. Proceedings of the Third International Conference

In this case, the disk does not incur additional overhead Knowledge Discovery and Data Minipigarch 1997.

for transferring data (due to disk prefetching) nor any ad-[g] G. wu and E. Chang. Adaptive feature-space conformal

ditional disk latency (due to rotational delay prediction).  transformation for learning imbalanced daRroceedings of
(If T,..+ cannot mask the seek-splitting overhead, we can  the Twentieth International Conference of Machine Learning
choose not to perform seek-splitting.) (ICML), pages 816-823, August 2003.

[9] G. Wu and E. Chang. Class-boundary alignment for learn-
ing imbalanced dataProceedings of the Twentieth Interna-

In_th_ls case, the maximum Walt.m.g tlme for 'Fhe high- tional Conference of Machine Learning (ICML) Workshop on
priority request is now a metems, if it arrives during one Learning from Imbalanced Datasetpages 49-56, August

of the two seek disk commands. However, if the ongoing 503
request is at the data-transfer stage, the longest stall for thgd] G. wu, Y. Wu, L. Jiao, Y.-F. Wang, and E. Y. Chang. Multi-

2. A higher-priority 1O arrives.

high-priority request is just ms. The expected value for camera spatio-temporal fusion biased sequence-data learning
waiting time is only} 0X424J;22XX992:110000X12 = 1.1 ms, a sig- for video surveillance. ACM International Conference on
nificant reduction fron61 ms. Multimedia November 2003.
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